Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > New ORNL method could unleash solar power potential

(Top) A phasor plot of the transient absorption data shows the presence of free charges and excitons; a false colored image shows their contributions at different spatial positions.
CREDIT: ORNL
(Top) A phasor plot of the transient absorption data shows the presence of free charges and excitons; a false colored image shows their contributions at different spatial positions.

CREDIT: ORNL

Abstract:
Measurement and data analysis techniques developed at the Department of Energy's Oak Ridge National Laboratory could provide new insight into performance-robbing flaws in crystalline structures, ultimately improving the performance of solar cells.

New ORNL method could unleash solar power potential

Oak Ridge, TN | Posted on March 16th, 2016

While solar cells made from light-harvesting perovskite (an organic-inorganic hybrid) materials have recently eclipsed the 20 percent efficiency mark, researchers believe they could do better if they had a clearer picture of energy flow at the nanometer scale. The ORNL discovery, described in a paper published in ACS Photonics, synchronizes microscopy, ultra-short pulses of laser light and data analytics to extract images with single-pixel precision, providing unprecedented detail.

"If we can see exactly and in real time what is happening, we can map out the electronic processes in space instead of relying on snapshots gleaned from spatial averages," said Benjamin Doughty, one of the authors and a member of ORNL's Chemical Sciences Division.

Armed with information about what electrons are doing inside the material, researchers believe they can make improvements that lead to solar cells that are more efficient and potentially less expensive.

"With conventional approaches of studying photovoltaic materials, we are unable to accurately map out electronic processes and how electrons are getting lost," Doughty said. "Those processes can translate into losses in efficiency."

The experiment consists of optically pumping the thin film sample with a 50 femtosecond -- or 50 millionths of a billionth of a second -- laser pulse and then measuring changes in light absorption with a second laser pulse in the material. The technique, called femtosecond transient absorption microscopy, consists of a tabletop of lasers, optics and a microscope. The net result is a pixel-by-pixel map of the material being studied and information researchers can use to improve performance.

"The ability to identify what will be created after the solar cell absorbs a photon, either a pair of free charges or their bound form called an exciton, is crucial from both fundamental and applied perspectives," said co-author Yingzhong Ma, who led the research team. "We found that both free charges and excitons are present, and the strength of our approach lies in not only identifying where they are but also determining what their relative contributions are when they are both present at a given spatial location."

A key remaining challenge is to understand what causes the observed spatial difference, said Ma, so he and colleagues are exploring an all-optical imaging approach that would allow them to correlate electronic dynamics with underlying structural information. This approach may also help researchers map and understand perovskite degradation issues associated with moisture. Ma noted that this must be resolved before solar cells based on this class of materials can be successful.

Other team members were Mary Jane Simpson, the lead author and a postdoctoral research associate in the Chemical Sciences Division, and Bin Yang and Kai Xiao of ORNL's Center for Nanophase Materials Science.

This research was funded by DOE's Office of Science. Perovskite sample preparation was done at the Center for Nanophase Materials Sciences, a DOE Office of Science User Facility.

####

About Oak Ridge National Laboratory
UT-Battelle manages ORNL for the DOE's Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov/.

For more information, please click here

Contacts:
Ron Walli

865-576-0226

Copyright © Oak Ridge National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The paper, titled "Separation of Distinct Photoexcitation Species in Femtosecond Transient Absorption Microscopy," is available at:

Related News Press

News and information

Quantum twisted Loong confirms the physical reality of wavefunctions September 23rd, 2017

Application of air-sensitive semiconductors in nanoelectronics: 2-D semiconductor gallium selenide in encapsulated nanoelectronic devices September 22nd, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

Laboratories

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

New insights into nanocrystal growth in liquid: Understanding process that creates complex crystals important for energy applications September 14th, 2017

Ames Laboratory scientists move graphene closer to transistor applications August 30th, 2017

Organic Electronics

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Living computers: RNA circuits transform cells into nanodevices July 27th, 2017

Probiotics: Novel biosynthetic tool to develop metallic nanoparticles: This research article by Dr. Nida Akhtar et al has been published in Recent Patents on Drug Delivery & Formulation, Volume 11, Issue 1, 2017 July 20th, 2017

Making two out of one: FAU researchers have explained the mechanism behind a process that can increase the efficiency of organic solar cells July 12th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Quantum twisted Loong confirms the physical reality of wavefunctions September 23rd, 2017

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

Discoveries

Quantum twisted Loong confirms the physical reality of wavefunctions September 23rd, 2017

Application of air-sensitive semiconductors in nanoelectronics: 2-D semiconductor gallium selenide in encapsulated nanoelectronic devices September 22nd, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

Announcements

Quantum twisted Loong confirms the physical reality of wavefunctions September 23rd, 2017

Application of air-sensitive semiconductors in nanoelectronics: 2-D semiconductor gallium selenide in encapsulated nanoelectronic devices September 22nd, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

Energy

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

Insect eyes inspire new solar cell design from Stanford August 31st, 2017

Personal Care/Cosmetics

Programmable materials find strength in molecular repetition May 23rd, 2016

Common nanoparticle has subtle effects on oxidative stress genes May 11th, 2016

NRL reveals novel uniform coating process of p-ALD April 21st, 2016

Ceapro Presents Unique Advantages of Its Disruptive Pressurized Gas Expanded Technology (PGX) at 2015 Composites at Lake Louise November 10th, 2015

Solar/Photovoltaic

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

Hydrogen power moves a step closer: Physicists are developing methods of creating renewable fuel from water using quantum technology September 15th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project