Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > New ORNL method could unleash solar power potential

(Top) A phasor plot of the transient absorption data shows the presence of free charges and excitons; a false colored image shows their contributions at different spatial positions.
CREDIT: ORNL
(Top) A phasor plot of the transient absorption data shows the presence of free charges and excitons; a false colored image shows their contributions at different spatial positions.

CREDIT: ORNL

Abstract:
Measurement and data analysis techniques developed at the Department of Energy's Oak Ridge National Laboratory could provide new insight into performance-robbing flaws in crystalline structures, ultimately improving the performance of solar cells.

New ORNL method could unleash solar power potential

Oak Ridge, TN | Posted on March 16th, 2016

While solar cells made from light-harvesting perovskite (an organic-inorganic hybrid) materials have recently eclipsed the 20 percent efficiency mark, researchers believe they could do better if they had a clearer picture of energy flow at the nanometer scale. The ORNL discovery, described in a paper published in ACS Photonics, synchronizes microscopy, ultra-short pulses of laser light and data analytics to extract images with single-pixel precision, providing unprecedented detail.

"If we can see exactly and in real time what is happening, we can map out the electronic processes in space instead of relying on snapshots gleaned from spatial averages," said Benjamin Doughty, one of the authors and a member of ORNL's Chemical Sciences Division.

Armed with information about what electrons are doing inside the material, researchers believe they can make improvements that lead to solar cells that are more efficient and potentially less expensive.

"With conventional approaches of studying photovoltaic materials, we are unable to accurately map out electronic processes and how electrons are getting lost," Doughty said. "Those processes can translate into losses in efficiency."

The experiment consists of optically pumping the thin film sample with a 50 femtosecond -- or 50 millionths of a billionth of a second -- laser pulse and then measuring changes in light absorption with a second laser pulse in the material. The technique, called femtosecond transient absorption microscopy, consists of a tabletop of lasers, optics and a microscope. The net result is a pixel-by-pixel map of the material being studied and information researchers can use to improve performance.

"The ability to identify what will be created after the solar cell absorbs a photon, either a pair of free charges or their bound form called an exciton, is crucial from both fundamental and applied perspectives," said co-author Yingzhong Ma, who led the research team. "We found that both free charges and excitons are present, and the strength of our approach lies in not only identifying where they are but also determining what their relative contributions are when they are both present at a given spatial location."

A key remaining challenge is to understand what causes the observed spatial difference, said Ma, so he and colleagues are exploring an all-optical imaging approach that would allow them to correlate electronic dynamics with underlying structural information. This approach may also help researchers map and understand perovskite degradation issues associated with moisture. Ma noted that this must be resolved before solar cells based on this class of materials can be successful.

Other team members were Mary Jane Simpson, the lead author and a postdoctoral research associate in the Chemical Sciences Division, and Bin Yang and Kai Xiao of ORNL's Center for Nanophase Materials Science.

This research was funded by DOE's Office of Science. Perovskite sample preparation was done at the Center for Nanophase Materials Sciences, a DOE Office of Science User Facility.

####

About Oak Ridge National Laboratory
UT-Battelle manages ORNL for the DOE's Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov/.

For more information, please click here

Contacts:
Ron Walli

865-576-0226

Copyright © Oak Ridge National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The paper, titled "Separation of Distinct Photoexcitation Species in Femtosecond Transient Absorption Microscopy," is available at:

Related News Press

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Organic Electronics

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

Laboratories

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Three-pronged approach discerns qualities of quantum spin liquids November 17th, 2023

Govt.-Legislation/Regulation/Funding/Policy

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

Discoveries

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Energy

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

The efficient perovskite cells with a structured anti-reflective layer – another step towards commercialization on a wider scale October 6th, 2023

Personal Care/Cosmetics

DGIST and New Life Group launched a research project on "Functional beauty and health products using the latest nanotechnology" May 12th, 2023

A Comprehensive Guide: The Future of Nanotechnology September 13th, 2018

Graphene finds new application as anti-static hair dye: New formula works as well as commercial permanent dyes without chemically altering hairs March 22nd, 2018

Programmable materials find strength in molecular repetition May 23rd, 2016

Solar/Photovoltaic

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

Charged “molecular beasts” the basis for new compounds: Researchers at Leipzig University use “aggressive” fragments of molecular ions for chemical synthesis November 3rd, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project