Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics

Abstract:
An engineering research team at the University of Alberta has invented a new transistor that could revolutionize thin-film electronic devices.

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics

Edmonton, Canada | Posted on February 10th, 2016

Their findings, published in the prestigious science journal Nature Communications, could open the door to the development of flexible electronic devices with applications as wide-ranging as display technology to medical imaging and renewable energy production.

The team was exploring new uses for thin film transistors (TFT), which are most commonly found in low-power, low-frequency devices like the display screen you're reading from now. Efforts by researchers and the consumer electronics industry to improve the performance of the transistors have been slowed by the challenges of developing new materials or slowly improving existing ones for use in traditional thin film transistor architecture, known technically as the metal oxide semiconductor field effect transistor (MOSFET).

But the U of A electrical engineering team did a run-around on the problem. Instead of developing new materials, the researchers improved performance by designing a new transistor architecture that takes advantage of a bipolar action. In other words, instead of using one type of charge carrier, as most thin film transistors do, it uses electrons and the absence of electrons (referred to as "holes") to contribute to electrical output. Their first breakthrough was forming an 'inversion' hole layer in a 'wide-bandgap' semiconductor, which has been a great challenge in the solid-state electronics field.

Once this was achieved, "we were able to construct a unique combination of semiconductor and insulating layers that allowed us to inject "holes" at the MOS interface," said Gem Shoute, a PhD student in the Department of Electrical and Computer Engineering who is lead author on the article. Adding holes at the interface increased the chances of an electron "tunneling" across a dielectric barrier. Through this phenomenon, a type of quantum tunnelling, "we were finally able to achieve a transistor that behaves like a bipolar transistor."

"It's actually the best performing [TFT] device of its kind--ever," said materials engineering professor Ken Cadien, a co-author on the paper. "This kind of device is normally limited by the non-crystalline nature of the material that they are made of"

The dimension of the device itself can be scaled with ease in order to improve performance and keep up with the need of miniaturization, an advantage that modern TFTs lack. The transistor has power-handling capabilities at least 10 times greater than commercially produced thin film transistors.

Electrical engineering professor Doug Barlage, who is Shoute's PhD supervisor and one of the paper's lead authors, says his group was determined to try new approaches and break new ground. He says the team knew it could produce a high-power thin film transistor--it was just a matter of finding out how.

"Our goal was to make a thin film transistor with the highest power handling and switching speed possible. Not many people want to look into that, but the raw properties of the film indicated dramatic performance increase was within reach," he said. "The high quality sub 30 nanometre (a human hair is 50 nanometres wide) layers of materials produced by Professor Cadien's group enabled us to successfully try these difficult concepts"

In the end, the team took advantage of the very phenomena other researchers considered roadblocks.

"Usually tunnelling current is considered a bad thing in MOSFETs and it contributes to unnecessary loss of power, which manifests as heat," explained Shoute. "What we've done is build a transistor that considers tunnelling current a benefit."

The team has filed a provisional patent on the transistor. Shoute says the next step is to put the transistor to work "in a fully flexible medium and apply these devices to areas like biomedical imaging, or renewable energy."

####

For more information, please click here

Contacts:
Richard Cairney

780-492-4514

Copyright © University of Alberta

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Remote-control shoots laser at nano-gold to turn on cancer-killing immune cells April 20th, 2018

New qubit now works without breaks: A universal design for superconducting qubits has been created April 19th, 2018

Observing biological nanotransporters: Chemistry April 19th, 2018

Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018

Thin films

High efficiency solar power conversion allowed by a novel composite material: A composite thin film developed at INRS improves significantly solar cells' power conversion efficiency April 10th, 2018

Researchers develop nanoparticle films for high-density data storage: April 3rd, 2018

Monocrystalline silicon thin film for cost-cutting solar cells with 10-times faster growth rate fabricated: Controlling nano surface roughness of porous silicon March 20th, 2018

Plasmons triggered in nanotube quantum wells: Rice, Tokyo Metropolitan scientists create platform for unique near-infrared devices March 16th, 2018

Display technology/LEDs/SS Lighting/OLEDs

Ancient paper art, kirigami, poised to improve smart clothing: New research shows how paper-cutting can make ultra strong, stretchable electronics April 3rd, 2018

Atomically thin light-emitting device opens the possibility for 'invisible' displays March 26th, 2018

Flexible Electronics

Ancient paper art, kirigami, poised to improve smart clothing: New research shows how paper-cutting can make ultra strong, stretchable electronics April 3rd, 2018

Govt.-Legislation/Regulation/Funding/Policy

Remote-control shoots laser at nano-gold to turn on cancer-killing immune cells April 20th, 2018

Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018

Quantum shift shows itself in coupled light and matter: Rice University scientists corral, quantify subtle movement in condensed matter system April 16th, 2018

When superconductivity disappears in the core of a quantum tube: By replacing the electrons with ultra-cold atoms, a group of physicists has created a perfectly clean material, unveiling new states of matter at the quantum level April 16th, 2018

Possible Futures

Remote-control shoots laser at nano-gold to turn on cancer-killing immune cells April 20th, 2018

New qubit now works without breaks: A universal design for superconducting qubits has been created April 19th, 2018

Observing biological nanotransporters: Chemistry April 19th, 2018

Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018

Chip Technology

New qubit now works without breaks: A universal design for superconducting qubits has been created April 19th, 2018

Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018

When superconductivity disappears in the core of a quantum tube: By replacing the electrons with ultra-cold atoms, a group of physicists has created a perfectly clean material, unveiling new states of matter at the quantum level April 16th, 2018

Nanometrics to Announce First Quarter Financial Results on May 1, 2018 April 10th, 2018

Discoveries

Remote-control shoots laser at nano-gold to turn on cancer-killing immune cells April 20th, 2018

New qubit now works without breaks: A universal design for superconducting qubits has been created April 19th, 2018

Observing biological nanotransporters: Chemistry April 19th, 2018

Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018

Announcements

Remote-control shoots laser at nano-gold to turn on cancer-killing immune cells April 20th, 2018

New qubit now works without breaks: A universal design for superconducting qubits has been created April 19th, 2018

Observing biological nanotransporters: Chemistry April 19th, 2018

Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Remote-control shoots laser at nano-gold to turn on cancer-killing immune cells April 20th, 2018

New qubit now works without breaks: A universal design for superconducting qubits has been created April 19th, 2018

Observing biological nanotransporters: Chemistry April 19th, 2018

Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018

Patents/IP/Tech Transfer/Licensing

Leti Silicon Photonics Design Kit Available in Synopsis OptoDesigner Suite: Kit Contains Design Rules and Building Blocks for Multi-Project Wafers And Custom Runs on Letiís Si310 Platform April 5th, 2018

NTU scientists create customizable, fabric-like power source for wearable electronics January 30th, 2018

IBM Breaks Records to Top U.S. Patent List for 25th Consecutive Year: IBM Inventors Receive Record 9,043 Patents in 2017 in Areas such as Artificial Intelligence, Cloud, Blockchain, Cybersecurity and Quantum Computing January 11th, 2018

A new product to help combat mouldy walls, thanks to technology developed at the ICN2 December 14th, 2017

Energy

Psst! A whispering gallery for light boosts solar cells April 14th, 2018

High efficiency solar power conversion allowed by a novel composite material: A composite thin film developed at INRS improves significantly solar cells' power conversion efficiency April 10th, 2018

Light 'relaxes' crystal to boost solar cell efficiency: Rice, Los Alamos discovery advances case for perovskite-based solar cells April 6th, 2018

Double perovskites in environmentally friendly solar cells: Long electron-hole diffusion length in high-quality lead-free double perovskite films April 6th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project