Home > Press > New invention revolutionizes heat transport
![]() |
Artistic impression of quantum-limited heat conduction of photons over macroscopic distances.
CREDIT: Heikka Valja |
Abstract:
Scientists at Aalto University, Finland, have made a breakthrough in physics. They succeeded in transporting heat maximally effectively ten thousand times further than ever before. The discovery may lead to a giant leap in the development of quantum computers.
Heat conduction is a fundamental physical phenomenon utilized, for example, in clothing, housing, car industry, and electronics. Thus our day-to-day life is inevitably affected by major shocks in this field. The research group, led by quantum physicist Mikko Möttönen has now made one of these groundbreaking discoveries. This new invention revolutionizes quantum-limited heat conduction which means as efficient heat transport as possible from point A to point B. This is great news especially for the developers of quantum computers.
Quantum technology is still a developing research field, but its most promising application is the super-efficient quantum computer. In the future, it can solve problems that a normal computer can never crack. The efficient operation of a quantum computer requires that it can be cooled down efficiently. At the same time, a quantum computer is prone to errors due to external noise.
Möttönen's innovation may be utilized in cooling quantum processors very efficiently and so cleverly that the operation of the computer is not disturbed.
"Our research started already in 2011 and advanced little by little. It feels really great to achieve a fundamental scientific discovery that has real practical applications", Professor Mikko Möttönen rejoices.
In the QCD Labs in Finland, Möttönen's research group succeeded in measuring quantum-limited heat transport over distances up to a meter. A meter doesn't sound very long at first, but previously scientists have been able to measure such heat transport only up to distances comparable to the thickness of a human hair.
"For computer processors, a meter is an extremely long distance. Nobody wants to build a larger processor than that", stresses Möttönen.
The discovery is so important, that it will be published on February 1st, 2016 in Nature Physics which is the most prestigious scientific journal in physics.
The key idea in their research was to use photons to transfer the heat. Photons are particles that, for example, form the visible light. Previously scientists have used, for example, electrons as the heat carriers.
"We know that photons can transport heat over long distances. In fact, they bring the heat of the Sun to the Earth", Möttönen says.
The team came up with the idea to use a transmission line with no electrical resistance to transport the photons. This superconducting line was built on a silicon chip with the size of a square centimeter. Tiny resistors were placed at the ends of the transmission line. The research results were obtained by measuring induced changes in the temperatures of these resistors.
New physics
The Quantum Computing and Devices (QCD) group led by Prof. Möttönen was able to show that quantum-limited heat conduction is possible over long distances. The result enables the application of this phenomenon outside laboratories. Thus the device built by the team fundamentally changes how heat conduction can be utilized in practice.
Möttönen's previous research results have also been praised in the scientific community as well as the media. He has published articles in top journals, such as Nature and Science. However, there is a reason why this new discovery feels even better than previous breakthroughs:
"The research has been fully carried out in my lab by my staff. This really makes me feel like I hit the jackpot", Möttönen rejoices.
####
For more information, please click here
Contacts:
Mikko Möttönen, Docent, D.Sc.
Aalto University
Department of Applied Physics
QCD Labs
http://physics.aalto.fi/qcd/
mobile: +358 50 594 0950
Twitter: @mpmotton
Blog: https://blogs.aalto.fi/quantum/
Copyright © Aalto University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Free link to the submitted version of the article:
Related News Press |
Quantum Physics
HKU physicists found signatures of highly entangled quantum matter July 22nd, 2022
Quantum network nodes with warm atoms June 24th, 2022
News and information
Generating power where seawater and river water meet July 22nd, 2022
First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022
Physics
Flexing the power of a conductive polymer: A new material holds promise for the next generation of organic electronics June 24th, 2022
Videos/Movies
Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022
Visualizing the invisible: New fluorescent DNA label reveals nanoscopic cancer features March 4th, 2022
OCSiAl receives the green light for Luxembourg graphene nanotube facility project to power the next generation of electric vehicles in Europe March 4th, 2022
Nanotube fibers stand strong -- but for how long? Rice scientists calculate how carbon nanotubes and their fibers experience fatigue December 24th, 2021
Possible Futures
Generating power where seawater and river water meet July 22nd, 2022
First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022
Quantum Computing
Quantum computer works with more than zero and one: Quantum digits unlock more computational power with fewer quantum particles July 22nd, 2022
Optical demonstration of quantum fault-tolerant threshold July 8th, 2022
University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022
Discoveries
HKU physicists found signatures of highly entangled quantum matter July 22nd, 2022
Buckyballs on gold are less exotic than graphene July 22nd, 2022
Announcements
Quantum computer works with more than zero and one: Quantum digits unlock more computational power with fewer quantum particles July 22nd, 2022
Generating power where seawater and river water meet July 22nd, 2022
First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Buckyballs on gold are less exotic than graphene July 22nd, 2022
Quantum computer works with more than zero and one: Quantum digits unlock more computational power with fewer quantum particles July 22nd, 2022
Generating power where seawater and river water meet July 22nd, 2022
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |