Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > New invention revolutionizes heat transport

Artistic impression of quantum-limited heat conduction of photons over macroscopic distances.
CREDIT: Heikka Valja
Artistic impression of quantum-limited heat conduction of photons over macroscopic distances.

CREDIT: Heikka Valja

Abstract:
Scientists at Aalto University, Finland, have made a breakthrough in physics. They succeeded in transporting heat maximally effectively ten thousand times further than ever before. The discovery may lead to a giant leap in the development of quantum computers.

New invention revolutionizes heat transport

Aalto, Finland | Posted on February 1st, 2016

Heat conduction is a fundamental physical phenomenon utilized, for example, in clothing, housing, car industry, and electronics. Thus our day-to-day life is inevitably affected by major shocks in this field. The research group, led by quantum physicist Mikko Möttönen has now made one of these groundbreaking discoveries. This new invention revolutionizes quantum-limited heat conduction which means as efficient heat transport as possible from point A to point B. This is great news especially for the developers of quantum computers.

Quantum technology is still a developing research field, but its most promising application is the super-efficient quantum computer. In the future, it can solve problems that a normal computer can never crack. The efficient operation of a quantum computer requires that it can be cooled down efficiently. At the same time, a quantum computer is prone to errors due to external noise.

Möttönen's innovation may be utilized in cooling quantum processors very efficiently and so cleverly that the operation of the computer is not disturbed.

"Our research started already in 2011 and advanced little by little. It feels really great to achieve a fundamental scientific discovery that has real practical applications", Professor Mikko Möttönen rejoices.

In the QCD Labs in Finland, Möttönen's research group succeeded in measuring quantum-limited heat transport over distances up to a meter. A meter doesn't sound very long at first, but previously scientists have been able to measure such heat transport only up to distances comparable to the thickness of a human hair.

"For computer processors, a meter is an extremely long distance. Nobody wants to build a larger processor than that", stresses Möttönen.

The discovery is so important, that it will be published on February 1st, 2016 in Nature Physics which is the most prestigious scientific journal in physics.

The key idea in their research was to use photons to transfer the heat. Photons are particles that, for example, form the visible light. Previously scientists have used, for example, electrons as the heat carriers.

"We know that photons can transport heat over long distances. In fact, they bring the heat of the Sun to the Earth", Möttönen says.

The team came up with the idea to use a transmission line with no electrical resistance to transport the photons. This superconducting line was built on a silicon chip with the size of a square centimeter. Tiny resistors were placed at the ends of the transmission line. The research results were obtained by measuring induced changes in the temperatures of these resistors.

New physics

The Quantum Computing and Devices (QCD) group led by Prof. Möttönen was able to show that quantum-limited heat conduction is possible over long distances. The result enables the application of this phenomenon outside laboratories. Thus the device built by the team fundamentally changes how heat conduction can be utilized in practice.

Möttönen's previous research results have also been praised in the scientific community as well as the media. He has published articles in top journals, such as Nature and Science. However, there is a reason why this new discovery feels even better than previous breakthroughs:

"The research has been fully carried out in my lab by my staff. This really makes me feel like I hit the jackpot", Möttönen rejoices.

####

For more information, please click here

Contacts:
Mikko Möttönen, Docent, D.Sc.
Aalto University
Department of Applied Physics
QCD Labs
http://physics.aalto.fi/qcd/

mobile: +358 50 594 0950
Twitter: @mpmotton
Blog: https://blogs.aalto.fi/quantum/

Copyright © Aalto University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Matti Partanen, Kuan Yen Tan, Joonas Govenius, Russell E. Lake, Miika K. Mäkelä, Tuomo Tanttu, and Mikko Möttönen,

Free link to the submitted version of the article:

Related News Press

Quantum Physics

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Physics

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

Scientists use heat to create transformations between skyrmions and antiskyrmions January 12th, 2024

Videos/Movies

New X-ray imaging technique to study the transient phases of quantum materials December 29th, 2022

Solvent study solves solar cell durability puzzle: Rice-led project could make perovskite cells ready for prime time September 23rd, 2022

Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022

Visualizing the invisible: New fluorescent DNA label reveals nanoscopic cancer features March 4th, 2022

Possible Futures

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Quantum Computing

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

Physicists ‘entangle’ individual molecules for the first time, hastening possibilities for quantum information processing: In work that could lead to more robust quantum computing, Princeton researchers have succeeded in forcing molecules into quantum entanglement December 8th, 2023

World’s first logical quantum processor: Key step toward reliable quantum computing December 8th, 2023

Optical-fiber based single-photon light source at room temperature for next-generation quantum processing: Ytterbium-doped optical fibers are expected to pave the way for cost-effective quantum technologies November 3rd, 2023

Discoveries

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project