Home > Press > From trees to power: McMaster engineers build better energy storage device
![]() |
Photos: Xuan Yang and Kevin Yager. |
Abstract:
McMaster Engineering researchers Emily Cranston and Igor Zhitomirsky are turning trees into energy storage devices capable of powering everything from a smart watch to a hybrid car.
The scientists are using cellulose, an organic compound found in plants, bacteria, algae and trees, to build more efficient and longer-lasting energy storage devices or supercapacitors. This development paves the way toward the production of lightweight, flexible, and high-power electronics, such as wearable devices, portable power supplies and hybrid and electric vehicles.
"Ultimately the goal of this research is to find ways to power current and future technology with efficiency and in a sustainable way," says Cranston, whose joint research was recently published in Advanced Materials. "This means anticipating future technology needs and relying on materials that are more environmentally friendly and not based on depleting resources.
Cellulose offers the advantages of high strength and flexibility for many advanced applications; of particular interest are nanocellulose-based materials. The work by Cranston, an assistant chemical engineering professor, and Zhitomirsky, a materials science and engineering professor, demonstrates an improved three-dimensional energy storage device constructed by trapping functional nanoparticles within the walls of a nanocellulose foam.
The foam is made in a simplified and fast one-step process. The type of nanocellulose used is called cellulose nanocrystals and looks like uncooked long-grain rice but with nanometer-dimensions. In these new devices, the 'rice grains' have been glued together at random points forming a mesh-like structure with lots of open space, hence the extremely lightweight nature of the material. This can be used to produce more sustainable capacitor devices with higher power density and faster charging abilities compared to rechargeable batteries.
Lightweight and high-power density capacitors are of particular interest for the development of hybrid and electric vehicles. The fast-charging devices allow for significant energy saving, because they can accumulate energy during braking and release it during acceleration.
"I believe that the best results can be obtained when researchers combine their expertise," Zhitomirsky says. "Emily is an amazing research partner. I have been deeply impressed by her enthusiasm, remarkable ability to organize team work and generate new ideas."
####
For more information, please click here
Contacts:
Monique Beech
905-525-9140 x27082
Copyright © McMaster University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Stability of perovskite solar cells reaches next milestone January 27th, 2023
Qubits on strong stimulants: Researchers find ways to improve the storage time of quantum information in a spin rich material January 27th, 2023
Temperature-sensing building material changes color to save energy January 27th, 2023
Materials/Metamaterials
Rice turns asphaltene into graphene for composites: ‘Flashed’ byproduct of crude oil could bolster materials, polymer inks November 18th, 2022
How “2D” materials expand: New technique that accurately measures how atom-thin materials expand when heated could help engineers develop faster, more powerful electronic devices November 18th, 2022
Semi-nonlinear etchless lithium niobate waveguide with bound states in the continuum November 4th, 2022
Announcements
Temperature-sensing building material changes color to save energy January 27th, 2023
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Qubits on strong stimulants: Researchers find ways to improve the storage time of quantum information in a spin rich material January 27th, 2023
Temperature-sensing building material changes color to save energy January 27th, 2023
Danish quantum physicists make nanoscopic advance of colossal significance January 27th, 2023
Automotive/Transportation
UC Irvine researchers decipher atomic-scale imperfections in lithium-ion batteries: Team used super high-resolution microscopy enhanced by deep machine learning January 27th, 2023
New nanowire sensors are the next step in the Internet of Things January 6th, 2023
Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage
UC Irvine researchers decipher atomic-scale imperfections in lithium-ion batteries: Team used super high-resolution microscopy enhanced by deep machine learning January 27th, 2023
Correlated rattling atomic chains reduce thermal conductivity of materials January 20th, 2023
Lithium-sulfur batteries are one step closer to powering the future January 6th, 2023
Tin selenide nanosheets enables to develop wearable tracking devices December 9th, 2022
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |