Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Record-high pressure reveals secrets of matter: The most incompressible metal osmium at static pressures above 750 GPa

Abstract:
A research team at Linköping University, together with colleagues in Europe and the United States, has shown that at extremely high pressure even the innermost electrons in the atomic nuclei of the metal osmium begin to interact with each other, a phenomenon never witnessed before. The findings have been published in Nature.

Record-high pressure reveals secrets of matter: The most incompressible metal osmium at static pressures above 750 GPa

Linköping, Sweden | Posted on August 25th, 2015

"If we know more about how a matter works, we will be in a better position to develop materials that withstand extreme conditions. In research we're constantly making advances, but in this case we've taken a giant leap", says Igor Abrikosov, professor of theoretical physics at Linköping University, who also leads the theoretical team within the project.

We already know that material properties change at high pressure. As pressure increases, the distance between the atoms decreases, and the outer electrons, the highly mobile valence electrons, interact with each other. It is also the valence electrons that determine the material's properties. For example under high pressure a shiny electrically conductive metal such as sodium becomes a transparent insulator, and a gas such as oxygen solidifies and conducts electricity. The oxygen can even become superconductive.

But while the valence electrons are highly mobile, the inner electrons continue to move steadily around their atomic nuclei.

The highest pressure achieved thus far is 4 million atmospheres or 400 GPa, which is roughly the pressure at the earth's centre. But thanks to a newly developed method, the researchers have been able to achieve a pressure that is twice as high as at the earth's centre and 7.7 million times higher than at the earth's surface. With great precision they have then been able to measure both temperature and relative positions of atoms in a small crystalline piece of osmium. Osmium is the metal with the highest density and is almost as incompressible as diamond.

Compressing osmium to this high pressure, the researchers found an unexpected anomaly in the relationship between the interatomic distances.

"The high pressure didn't result in any significant change to the valence electrons, which surprised us. It made us rethink things, and go back to the theories", explains Prof. Abrikosov.

Advanced supercomputer calculations at the National Supercomputer Centre, NSC, in Linköping later revealed how the innermost electrons start to interact with each other as a result of the extreme pressure.

"This is a perfect example of collaboration between experimental and theoretical materials research", says LiU researcher Dr Marcus Ekholm, co-author of the article.

This breakthrough is the result of a long-standing collaboration between the research team at LiU and researchers in Germany, the United States, the Netherlands, France and Russia. The researchers at Bayreuth University in Germany developed the method that makes it possible to apply twice the pressure that was previously possible, while still being able to measure and maintain control. This high pressure could exist at the centre of larger planets than ours.

"Interaction between inner electrons has not previously been observed, and the phenomenon means that we can start searching for brand new states of matter", says Prof Abrikosov.

The results have been published in the highly ranked journal Nature.

"We're really delighted, and it's exciting as it opens up a whole box of new questions for future research", says Prof Abrikosov.

###

The Most Incompressible Metal Osmium at Static Pressures above 750 GPa,
L. Dubrovinsky, N. Dubrovinskaia, E. Bykova, M. Bykov, V. Prakapenka, C. Prescher, K. Glazyrin, H.-P. Liermann, M. Hanfland, M. Ekholm, Q. Feng L. V. Pourovskii, M. I. Katsnelson, J. M. Wills, and I. A. Abrikosov.
Advance Online Publication on Nature´s website from 24 August 2015.
Doi 10.1038/nature14681

The method: Diamond anvil cell

This method has been in use since the late 1950s. The researchers in Bayreuth, with the help of nanotechnology, have developed a small synthetic diamond that is positioned halfway between two ordinary diamonds, on each side of the Osmium crystal. The small diamonds are just a few thousandths of a centimetre in diameter. Because the area is significantly decreased, the pressure is significantly higher.

####

For more information, please click here

Contacts:
Professor Igor Abrikosov

46-709-295-650

Copyright © Linköping University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Physics

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

Scientists use heat to create transformations between skyrmions and antiskyrmions January 12th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Discoveries

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Materials/Metamaterials/Magnetoresistance

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project