Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Major innovation in molecular imaging delivers spatial and spectral info simultaneously: Berkeley Lab scientist invents technique to combine spectroscopy with super-resolution microscopy, enabling new ways to examine cell structures and study diseases

This is a spectrally resolved super-resolution microscopy image of four subcellular targets that were labeled by four far-red dyes at 10 nm spectral separation. Color is used to indicate the measured fluorescence emission position of each single molecule. (Scale bar: 1 µm)
CREDIT: Ke Xu/Berkeley Lab
This is a spectrally resolved super-resolution microscopy image of four subcellular targets that were labeled by four far-red dyes at 10 nm spectral separation. Color is used to indicate the measured fluorescence emission position of each single molecule. (Scale bar: 1 µm)

CREDIT: Ke Xu/Berkeley Lab

Abstract:
Using physical chemistry methods to look at biology at the nanoscale, a Lawrence Berkeley National Laboratory (Berkeley Lab) researcher has invented a new technology to image single molecules with unprecedented spectral and spatial resolution, thus leading to the first "true-color" super-resolution microscope.

Major innovation in molecular imaging delivers spatial and spectral info simultaneously: Berkeley Lab scientist invents technique to combine spectroscopy with super-resolution microscopy, enabling new ways to examine cell structures and study diseases

Berkeley, CA | Posted on August 17th, 2015

Ke Xu, a faculty scientist in Berkeley Lab's Life Sciences Division, has dubbed his innovation SR-STORM, or spectrally resolved stochastic optical reconstruction microscopy. Because SR-STORM gives full spectral and spatial information for each molecule, the technology opens the door to high-resolution imaging of multiple components and local chemical environments, such as pH variations, inside a cell.

The research was reported in the journal Nature Methods in a paper titled, "Ultrahigh-throughput single-molecule spectroscopy and spectrally resolved super-resolution microscopy," with co-authors Zhengyang Zhang, Samuel Kenny, Margaret Hauser, and Wan Li, all of UC Berkeley. Xu is also an assistant professor at UC Berkeley's Department of Chemistry.

"We measure both the position and spectrum of each individual molecule, plotting its super-resolved spatial position in two dimensions and coloring each molecule according to its spectral position, so in that sense, it's true-color super-resolution microscopy, which is the first of its kind," Xu said. "This is a new type of imaging, combining single-molecule spectral measurement with super-resolution microscopy."

What's more, SR-STORM is high-throughput, able to deliver spatial and spectral information for millions of single molecules in about five minutes, compared to several minutes for a single frame of image comprising tens of molecules using conventional scanning-based techniques.

Xu built on work he did as a postdoctoral researcher at Harvard with Xiaowei Zhuang, who invented STORM, a super-resolution microscopy method based on single-molecule imaging and photoswitching. By devising a dual-objective system with two microscope lenses facing each other, Xu and colleagues viewed the front and back of the sample at the same time and achieved unprecedented optical resolution (of approximately 10 nanometers) of a cell. Using this method to image neurons, they showed that actin, a key component of the cytoskeleton (backbone of the cell), has a different structure in axons than in dendrites, two parts of a neuron.

But current super-resolution microscopy techniques do not deliver spectral information, which is useful for scientists to understand the behavior of individual molecules, as well as to enable high-quality multicolor imaging of multiple targets.

"So we constructed a dual-objective system but dispersed the single-molecule image collected by one objective lens into spectrum while keeping the other image for single-molecule localization," Xu said. "Now we are simultaneously accumulating the spectrum of the single molecules and also their position, so we solved the conundrum."

Next they dyed the sample with 14 different dyes in a narrow emission window and excited and photoswitched the molecules with one laser. While the spectra of the 14 dyes are heavily overlapping since they're close in emission, they found that the spectra of the individual molecules were surprisingly different and thus readily identifiable. "That's useful because it means we had a way to do multicolor imaging within a very narrow emission window," Xu said.

Indeed, using four dyes to label four different subcellular structures, such as mitochondria and microtubules, they were able to easily distinguish molecules of different dyes based on their spectral mean alone, and each subcellular structure was a distinct color.

"So using this method we can look at interactions between four biological components inside a cell in three-dimension and at very high resolution of about 10 nanometers," Xu said. "The applications are mostly in fundamental research and cell biology at this point, but hopefully it will lead to medical applications. This gives us new opportunities to look at cell structures, how they're built up, and whether there's any degradation of those structures in diseases."

Many diseases are caused either by an invading pathogen or degradation of a cell's internal structure. Alzheimer's, for example, may be related to degradation of the cytoskeleton inside neurons. "The cytoskeleton system is comprised of a host of interacting subcellular structures and proteins, and our technique will enable research on the interactions between these different targets with unprecedented number of color channels and spatial resolution," he said.

Next, Xu is trying to refine the method by using a single-objective system, and make it work with conventional microscope systems, thus making it more broadly accessible. He is also trying to develop suitable dyes and probes to monitor the local environment, such as the pH, in live cells at the nanometer scale.

###

The research was partly supported by UC Berkeley's College of Chemistry and a Laboratory Directed Research and Development (LDRD) grant by Berkeley Lab.

####

About DOE/Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory addresses the world's most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab's scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy's Office of Science. For more, visit www.lbl.gov.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

For more information, please click here

Contacts:
Julie Chao

510-486-6491

Copyright © DOE/Lawrence Berkeley National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Imaging

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

Laboratories

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Tools

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Research partnerships

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project