Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > UCLA scientists use large particle accelerator to visualize properties of nanoscale materials: A technique devised by UCLA researchers could help scientists better understand a tiny — but potentially important — component of next-generation electronic devices

Courtesy of TRIUMF
UCLA researchers used the cyclotron at the TRI University Meson Facility, or TRIUMF, in Vancouver, British Columbia.
Courtesy of TRIUMF

UCLA researchers used the cyclotron at the TRI University Meson Facility, or TRIUMF, in Vancouver, British Columbia.

Abstract:
Scientists trying to improve the semiconductors that power our electronic devices have focused on a technology called spintronics as one especially promising area of research. Unlike conventional devices that use electrons’ charge to create power, spintronic devices use electrons’ spin. The technology is already used in computer hard drives and many other applications — and scientists believe it could eventually be used for quantum computers, a new generation of machines that use quantum mechanics to solve complex problems with extraordinary speed.

UCLA scientists use large particle accelerator to visualize properties of nanoscale materials: A technique devised by UCLA researchers could help scientists better understand a tiny — but potentially important — component of next-generation electronic devices

Los Angeles, CA | Posted on July 15th, 2015

Emerging research has shown that one key to greatly improving performance in spintronics could be a class of materials called topological insulators. Unlike ordinary materials that are either insulators or conductors, topological insulators function as both simultaneously — on the inside, they are insulators but on their exteriors, they conduct electricity.

But topological insulators have certain defects that have so far limited their use in practical applications, and because they are so tiny, scientists have so far been unable to fully understand how the defects impact their functionality.

The UCLA researchers have overcome that challenge with a new method to visualize topological insulators at the nanoscale. An article highlighting the research, which was which led by Louis Bouchard, assistant professor of chemistry and biochemistry, and Dimitrios Koumoulis, a UCLA postdoctoral scholar, was published online in the Proceedings of the National Academy of Sciences.

The new method is the first use of beta‑detected nuclear magnetic resonance to study the effects of these defects on the properties of topological insulators.

The technique involves aiming a highly focused stream of ions at the topological insulator. To generate that beam of ions, the researchers used a large particle accelerator called a cyclotron, which accelerates protons through a spiral path inside the machine and forces them to collide with a target made of the chemical element tantalum. This collision produces lithium-8 atoms, which are ionized and slowed down to a desired energy level before they are implanted in the topological insulators.

In beta‑detected nuclear magnetic resonance, ions (in this case, the ionized lithium-8 atoms) of various energies are implanted in the material of interest (the topological insulator) to generate signals from the material’s layers of interest.

Bouchard said the method is particularly well suited for probing regions near the surfaces and interfaces of different materials.

In the UCLA research, the high sensitivity of the beta‑detected nuclear magnetic resonance technique and its ability to probe materials allowed the scientists to “see” the impacts of the defects in the topological insulators by viewing the electronic and magnetic properties beneath the surface of the material.

The researchers used the large TRIUMF cyclotron in Vancouver, British Columbia.

Co-authors of the PNAS research were Danny King, formerly a UCLA graduate student in chemistry and biochemistry; Kang L. Wang, a UCLA professor of electrical engineering; Liang He, formerly a postdoctoral scholar in Wang’s lab; Xufeng Kou, formerly a graduate student in Wang’s lab; Gerald Morris and Masrur Hossain at TRIUMF; Dong Wang of the University of British Columbia; Gregory Fiete, a professor at the University of Texas, Austin; and Mercouri Kanatzidis, a professor at Northwestern University.

The research was funded by the Defense Advanced Research Project Agency’s Mesodynamic Architectures program.

####

For more information, please click here

Contacts:
Shaun Mason, CNSI
310-794-5346

Copyright © UCLA

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Download article:

Related News Press

News and information

Biology’s hardest working pigments and ‘MOFs’ might just save the climate: A range of processes that currently depend on fossil fuels but are really hard to electrify will depend on the development of genuinely clean fuels, and for that to happen, much more efficient catalysts wi July 22nd, 2022

Generating power where seawater and river water meet July 22nd, 2022

First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022

At the water’s edge: Self-assembling 2D materials at a liquid–liquid interface: Scientists find a simple way to produce heterolayer coordination nanosheets, expanding the diversity of 2D materials July 22nd, 2022

Imaging

An artificial intelligence probe help see tumor malignancy July 1st, 2022

Snapshot measurement of single nanostructure’s circular dichroism March 25th, 2022

Better understanding superconductors with Higgs spectroscopy Prof. Stefan Kaiser from TU Dresden awarded ERC Consolidator Grant March 18th, 2022

Turning any camera into a polarization camera: Metasurface attachment can be used with almost any optical system, from machine vision cameras to telescopes March 18th, 2022

Govt.-Legislation/Regulation/Funding/Policy

UNC Charlotte-led team invents new anticoagulant platform, offering hope for advances for heart surgery, dialysis, other procedures July 15th, 2022

Strain-sensing smart skin ready to deploy: Nanotube-embedded coating detects threats from wear and tear in large structures July 15th, 2022

Rensselaer researchers learn to control electron spin at room temperature to make devices more efficient and faster: Electron spin, rather than charge, holds the key July 15th, 2022

Crystal phase engineering offers glimpse of future potential, researchers say July 15th, 2022

Chip Technology

The best semiconductor of them all? Researchers have found a material that can perform much better than silicon. The next step is finding practical and economic ways to make it July 22nd, 2022

Buckyballs on gold are less exotic than graphene July 22nd, 2022

Quantum computer works with more than zero and one: Quantum digits unlock more computational power with fewer quantum particles July 22nd, 2022

At the water’s edge: Self-assembling 2D materials at a liquid–liquid interface: Scientists find a simple way to produce heterolayer coordination nanosheets, expanding the diversity of 2D materials July 22nd, 2022

Nanoelectronics

Atomic level deposition to extend Moore’s law and beyond July 15th, 2022

Controlled synthesis of crystal flakes paves path for advanced future electronics June 17th, 2022

The physics of a singing saw: Insights on centuries-old folk instrument is underpinned by a mathematical principle that may pave the way for high-quality resonators for sensing, electronics and more April 22nd, 2022

Eyebrow-raising: Researchers reveal why nanowires stick to each other February 11th, 2022

Discoveries

HKU physicists found signatures of highly entangled quantum matter July 22nd, 2022

How different cancer cells respond to drug-delivering nanoparticles: The findings of a large-scale screen could help researchers design nanoparticles that target specific types of cancer July 22nd, 2022

The best semiconductor of them all? Researchers have found a material that can perform much better than silicon. The next step is finding practical and economic ways to make it July 22nd, 2022

Buckyballs on gold are less exotic than graphene July 22nd, 2022

Announcements

Quantum computer works with more than zero and one: Quantum digits unlock more computational power with fewer quantum particles July 22nd, 2022

Biology’s hardest working pigments and ‘MOFs’ might just save the climate: A range of processes that currently depend on fossil fuels but are really hard to electrify will depend on the development of genuinely clean fuels, and for that to happen, much more efficient catalysts wi July 22nd, 2022

Generating power where seawater and river water meet July 22nd, 2022

First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Buckyballs on gold are less exotic than graphene July 22nd, 2022

Quantum computer works with more than zero and one: Quantum digits unlock more computational power with fewer quantum particles July 22nd, 2022

Biology’s hardest working pigments and ‘MOFs’ might just save the climate: A range of processes that currently depend on fossil fuels but are really hard to electrify will depend on the development of genuinely clean fuels, and for that to happen, much more efficient catalysts wi July 22nd, 2022

Generating power where seawater and river water meet July 22nd, 2022

Military

Strain-sensing smart skin ready to deploy: Nanotube-embedded coating detects threats from wear and tear in large structures July 15th, 2022

Rensselaer researchers learn to control electron spin at room temperature to make devices more efficient and faster: Electron spin, rather than charge, holds the key July 15th, 2022

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

Bumps could smooth quantum investigations: Rice University models show unique properties of 2D materials stressed by contoured substrates June 10th, 2022

Research partnerships

Crystal phase engineering offers glimpse of future potential, researchers say July 15th, 2022

New technology helps reveal inner workings of human genome June 24th, 2022

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

Undergrads begin summer quantum research with support from Moore Foundation, Chicago region universities, national labs: Inaugural cohort of students join quantum research labs around the Midwest, planting the seeds for a diverse and inclusive quantum workforce June 17th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project