Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Tel Aviv/Tsinghua University project uses crowd computing to improve water filtration: The research, a product of the new TAU-Tsinghua XIN Center, was conducted by 150,000 volunteers at IBM's World Community Grid

Abstract:
Nearly 800 million people worldwide don't have access to safe drinking water, and some 2.5 billion people live in precariously unsanitary conditions, according to the Centers for Disease Control and Prevention. Together, unsafe drinking water and the inadequate supply of water for hygiene purposes contribute to almost 90% of all deaths from diarrheal diseases -- and effective water sanitation interventions are still challenging scientists and engineers.

Tel Aviv/Tsinghua University project uses crowd computing to improve water filtration: The research, a product of the new TAU-Tsinghua XIN Center, was conducted by 150,000 volunteers at IBM's World Community Grid

New York, NY | Posted on July 6th, 2015

A new study published in Nature Nanotechnology proposes a novel nanotechnology-based strategy to improve water filtration. The research project involves the minute vibrations of carbon nanotubes called "phonons," which greatly enhance the diffusion of water through sanitation filters. The project was the joint effort of a Tsinghua University-Tel Aviv University research team and was led by Prof. Quanshui Zheng of the Tsinghua Center for Nano and Micro Mechanics and Prof. Michael Urbakh of the TAU School of Chemistry, both of the TAU-Tsinghua XIN Center, in collaboration with Prof. Francois Grey of the University of Geneva.

Shake, rattle, and roll

"We've discovered that very small vibrations help materials, whether wet or dry, slide more smoothly past each other," said Prof. Urbakh. "Through phonon oscillations -- vibrations of water-carrying nanotubes -- water transport can be enhanced, and sanitation and desalination improved. Water filtration systems require a lot of energy due to friction at the nano-level. With these oscillations, however, we witnessed three times the efficiency of water transport, and, of course, a great deal of energy saved."

The research team managed to demonstrate how, under the right conditions, such vibrations produce a 300% improvement in the rate of water diffusion by using computers to simulate the flow of water molecules flowing through nanotubes. The results have important implications for desalination processes and energy conservation, e.g. improving the energy efficiency for desalination using reverse osmosis membranes with pores at the nanoscale level, or energy conservation, e.g. membranes with boron nitride nanotubes.

Crowdsourcing the solution

The project, initiated by IBM's World Community Grid, was an experiment in crowdsourced computing -- carried out by over 150,000 volunteers who contributed their own computing power to the research.

"Our project won the privilege of using IBM's world community grid, an open platform of users from all around the world, to run our program and obtain precise results," said Prof. Urbakh. "This was the first project of this kind in Israel, and we could never have managed with just four students in the lab. We would have required the equivalent of nearly 40,000 years of processing power on a single computer. Instead we had the benefit of some 150,000 computing volunteers from all around the world, who downloaded and ran the project on their laptops and desktop computers.

"Crowdsourced computing is playing an increasingly major role in scientific breakthroughs," Prof. Urbakh continued. "As our research shows, the range of questions that can benefit from public participation is growing all the time."

The computer simulations were designed by Ming Ma, who graduated from Tsinghua University and is doing his postdoctoral research in Prof. Urbakh's group at TAU. Ming catalyzed the international collaboration. "The students from Tsinghua are remarkable. The project represents the very positive cooperation between the two universities, which is taking place at XIN and because of XIN," said Prof. Urbakh.

Other partners in this international project include researchers at the London Centre for Nanotechnology of University College London; the University of Geneva; the University of Sydney and Monash University in Australia; and the Xi'an Jiaotong University in China. The researchers are currently in discussions with companies interested in harnessing the oscillation knowhow for various commercial projects.

####

About American Friends of Tel Aviv University
American Friends of Tel Aviv University supports Israel's most influential, most comprehensive, and most sought-after center of higher learning, Tel Aviv University (TAU). US News & World Report's Best Global Universities Rankings rate TAU as #148 in the world, and the Times Higher Education World University Rankings rank TAU Israel's top university. It is one of a handful of elite international universities rated as the best producers of successful startups, and TAU alumni rank #9 in the world for the amount of venture capital they attract.

A leader in the pan-disciplinary approach to education, TAU is internationally recognized for the scope and groundbreaking nature of its research and scholarship -- attracting world-class faculty and consistently producing cutting-edge work with profound implications for the future.

For more information, please click here

Contacts:
George Hunka

212-742-9070

Copyright © American Friends of Tel Aviv University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

VC/Funding/Angel financing/Loans/Leases/Crowdfunding

Graphene Flagship start-up Bedimensional closes a second €10 million investment round February 10th, 2023

180 Degree Capital Corp. Reports +14.2% Growth in Q1 2021, $10.60 Net Asset Value Per Share as of March 31, 2021, and Developments From Q2 2021 May 11th, 2021

180 Degree Capital Corp. Issues Second Open Letter to the Board and Shareholders of Enzo Biochem, Inc. March 26th, 2021

180 Degree Capital Corp. Reports +6.7% Growth in Q4 2020, $9.28 Net Asset Value per Share as of December 31, 2020, and Developments from Q1 2021 Including Expected Investment in a Planned SPAC Sponsor February 22nd, 2021

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Water

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Computational system streamlines the design of fluidic devices: This computational tool can generate an optimal design for a complex fluidic device such as a combustion engine or a hydraulic pump December 9th, 2022

Taking salt out of the water equation October 7th, 2022

Scientists capture a ‘quantum tug’ between neighboring water molecules: Ultrafast electrons shed light on the web of hydrogen bonds that gives water its strange properties, vital for many chemical and biological processes July 8th, 2022

Research partnerships

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project