Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Researchers simulate behavior of 'active matter'

Computer models show how small, spinning particles suspended in a fluid can form a variety of macro-scale structures at different concentrations. (Concentrations increase left to right.) The vertical axis charts kinetic energy, which declines sharply at high concentrations.
CREDIT: Brown University
Computer models show how small, spinning particles suspended in a fluid can form a variety of macro-scale structures at different concentrations. (Concentrations increase left to right.) The vertical axis charts kinetic energy, which declines sharply at high concentrations.

CREDIT: Brown University

Abstract:
From flocks of starlings to schools of fish, nature is full of intricate dynamics that emerge from the collective behavior of individuals. In recent years, interest has grown in trying to capture similar dynamics to make self-assembling materials from so-called "active matter."

Researchers simulate behavior of 'active matter'

Providence, RI | Posted on June 3rd, 2015

Brown University researchers Kyongmin Yeo, Enkeleida Lushi, and Petia Vlahovska have shed new light on a particular class of active matter called active colloids -- collections of tiny moving particles suspended in fluid. Using numerical models and computer simulations, the researchers show how spinning particles, pushed about by the fluid flows created as each particle spins, can arrange themselves into an array of emergent macro-scale patterns.

The research, published recently in Physical Review Letters, could help engineers to understand the dynamics of these systems and design new materials using rotating colloidal particles.

The study of active colloidal rotors is relatively new. In the last few years, several experimental groups have shown that individual particles in fluid -- when coaxed to spin by magnetic or electric fields -- can form interesting collective structures. For example, one group recently showed that millimeter-scale wires can assemble in this way from ferromagnetic micro-particles.

The researchers at Brown aimed to use computational methods to try to better understand just what mechanisms are behind these emergent patterns. For this particular study, the researchers were looking specifically at how fluid flows can impact such systems.

"The problem with complex systems like electromagnetically driven active colloids is you don't know which dynamics are coming from which interactions," said Lushi, a postdoctoral researcher in Brown's School of Engineering. "So we wanted to step back and look just at what the fluid does to the pattern formation, since the fluid environment is always present in these systems. Then in the future we can scale up and combine that with other interactions such as electric or magnetic and compare with experiments."

Lushi and her colleagues simulated a system in which half the particles spin clockwise and the other half spin counter-clockwise. "As each particle rotates, it creates a disturbance in the fluid and that affects the neighbors," Lushi said. "The particles interact through the flow disturbances they create and also by direct collisions."

The simulations showed that at low particle concentrations, the fluid pushes the particles chaotically, in no discernible pattern. But as the particle concentrations increase, patterns begin to emerge. At a certain point, the particles begin to segregate according to spin direction -- forming distinct "lanes" of particles with the same spin. As the concentration increases, small swirling vortices of same-spin particles form. At still higher concentrations, a large hurricane-like structure of same-spin particles forms. But if the concentration is too high the particles just jam into crystals and cannot segregate anymore.

This is the first simulation of its kind that has tried to account for effects of fluid flows in populations of rotating colloids, the researchers say. The results underscore just how important that fluid flow can be in these systems.

"Even just that simple interaction -- rotation creating disturbances in the fluid -- gives us all this complex behavior," said Vlahovska, associate professor of engineering at Brown and the paper's senior author. "At the micron scale, you can't ignore the fluid. It's a force that has to be reckoned with."

Ultimately, the researchers hope that simulations like this one could help scientists to harness emergent behavior to make new materials.

"It is expensive to do experiments in the lab, hoping to discover just by serendipity some new behavior or new material," Lushi said. "Computer simulations are much cheaper to perform, and can give experimentalists a useful set of parameters for what kinds of interesting dynamics could be seen in the system."

####

For more information, please click here

Contacts:
Kevin Stacey

401-863-3766

Copyright © Brown University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Arrowhead Pharmaceuticals to Host R&D Day on Emerging Pipeline of RNAi Therapeutics September 25th, 2018

Arrowhead Pharmaceuticals to Host R&D Day on Emerging Pipeline of RNAi Therapeutics September 25th, 2018

Arrowhead Pharmaceuticals Reports Inducement Grants under NASDAQ Marketplace Rule 5635(c)(4) September 25th, 2018

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

Self Assembly

DNA drives design principles for lighter, thinner optical displays: Lighter gold nanoparticles could replace thicker, heavier layered polymers used in displaysí back-reflectors June 27th, 2018

Collaboration yields discovery of 12-sided silica cages June 20th, 2018

Self-assembling 3D battery would charge in seconds May 22nd, 2018

Engineered polymer membranes could be new option for water treatment May 6th, 2018

Discoveries

Searching for errors in the quantum world September 21st, 2018

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Silver nanoparticles are toxic for aquatic organisms: A research team at the UPV/EHU-University of the Basque Country has analysed how zebrafish are affected in the long term by exposure to silver particles September 19th, 2018

Materials/Metamaterials

How a tetrahedral substance can be more symmetrical than a spherical atom: A new type of symmetry September 14th, 2018

Peering into private life of atomic clusters -- using the world's tiniest test tubes September 6th, 2018

Cannibalistic materials feed on themselves to grow new nanostructures September 1st, 2018

Environmentally friendly photoluminescent nanoparticles for more vivid display colors: Osaka University-led researchers created a new type of light-emitting nanoparticle that is made of ternary non-toxic semiconductors to help create displays and LED lighting with better colors t August 29th, 2018

Announcements

Arrowhead Pharmaceuticals to Host R&D Day on Emerging Pipeline of RNAi Therapeutics September 25th, 2018

Arrowhead Pharmaceuticals to Host R&D Day on Emerging Pipeline of RNAi Therapeutics September 25th, 2018

Arrowhead Pharmaceuticals Reports Inducement Grants under NASDAQ Marketplace Rule 5635(c)(4) September 25th, 2018

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Searching for errors in the quantum world September 21st, 2018

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

NUS researchers invent new test kit for quick, accurate and low-cost screening of diseases: Test results are denoted by a color change and could be further analyzed by a smartphone app, making it attractive as a point-of-care diagnostic device September 19th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project