Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Researchers simulate behavior of 'active matter'

Computer models show how small, spinning particles suspended in a fluid can form a variety of macro-scale structures at different concentrations. (Concentrations increase left to right.) The vertical axis charts kinetic energy, which declines sharply at high concentrations.
CREDIT: Brown University
Computer models show how small, spinning particles suspended in a fluid can form a variety of macro-scale structures at different concentrations. (Concentrations increase left to right.) The vertical axis charts kinetic energy, which declines sharply at high concentrations.

CREDIT: Brown University

Abstract:
From flocks of starlings to schools of fish, nature is full of intricate dynamics that emerge from the collective behavior of individuals. In recent years, interest has grown in trying to capture similar dynamics to make self-assembling materials from so-called "active matter."

Researchers simulate behavior of 'active matter'

Providence, RI | Posted on June 3rd, 2015

Brown University researchers Kyongmin Yeo, Enkeleida Lushi, and Petia Vlahovska have shed new light on a particular class of active matter called active colloids -- collections of tiny moving particles suspended in fluid. Using numerical models and computer simulations, the researchers show how spinning particles, pushed about by the fluid flows created as each particle spins, can arrange themselves into an array of emergent macro-scale patterns.

The research, published recently in Physical Review Letters, could help engineers to understand the dynamics of these systems and design new materials using rotating colloidal particles.

The study of active colloidal rotors is relatively new. In the last few years, several experimental groups have shown that individual particles in fluid -- when coaxed to spin by magnetic or electric fields -- can form interesting collective structures. For example, one group recently showed that millimeter-scale wires can assemble in this way from ferromagnetic micro-particles.

The researchers at Brown aimed to use computational methods to try to better understand just what mechanisms are behind these emergent patterns. For this particular study, the researchers were looking specifically at how fluid flows can impact such systems.

"The problem with complex systems like electromagnetically driven active colloids is you don't know which dynamics are coming from which interactions," said Lushi, a postdoctoral researcher in Brown's School of Engineering. "So we wanted to step back and look just at what the fluid does to the pattern formation, since the fluid environment is always present in these systems. Then in the future we can scale up and combine that with other interactions such as electric or magnetic and compare with experiments."

Lushi and her colleagues simulated a system in which half the particles spin clockwise and the other half spin counter-clockwise. "As each particle rotates, it creates a disturbance in the fluid and that affects the neighbors," Lushi said. "The particles interact through the flow disturbances they create and also by direct collisions."

The simulations showed that at low particle concentrations, the fluid pushes the particles chaotically, in no discernible pattern. But as the particle concentrations increase, patterns begin to emerge. At a certain point, the particles begin to segregate according to spin direction -- forming distinct "lanes" of particles with the same spin. As the concentration increases, small swirling vortices of same-spin particles form. At still higher concentrations, a large hurricane-like structure of same-spin particles forms. But if the concentration is too high the particles just jam into crystals and cannot segregate anymore.

This is the first simulation of its kind that has tried to account for effects of fluid flows in populations of rotating colloids, the researchers say. The results underscore just how important that fluid flow can be in these systems.

"Even just that simple interaction -- rotation creating disturbances in the fluid -- gives us all this complex behavior," said Vlahovska, associate professor of engineering at Brown and the paper's senior author. "At the micron scale, you can't ignore the fluid. It's a force that has to be reckoned with."

Ultimately, the researchers hope that simulations like this one could help scientists to harness emergent behavior to make new materials.

"It is expensive to do experiments in the lab, hoping to discover just by serendipity some new behavior or new material," Lushi said. "Computer simulations are much cheaper to perform, and can give experimentalists a useful set of parameters for what kinds of interesting dynamics could be seen in the system."

####

For more information, please click here

Contacts:
Kevin Stacey

401-863-3766

Copyright © Brown University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanometrics to Announce Fourth Quarter and Full Year Financial Results on February 5, 2019 January 18th, 2019

ULVAC Inc., and Oxford Instruments Plasma Technology collaborate to bring Atomic Scale Processing solutions to the Japanese Power and RF markets January 18th, 2019

Kiel physicists discover new effect in the interaction of plasmas with solids January 18th, 2019

Brilliant glow of paint-on semiconductors comes from ornate quantum physics January 18th, 2019

Self Assembly

Light up logic: Engineers from UTokyo and RIKEN perform computational logic with light January 18th, 2019

High-performance self-assembled catalyst for SOFC October 12th, 2018

New bio-inspired dynamic materials transform themselves: Highly dynamic synthetic superstructure provides new clues on brain, spinal cord injuries and neurological disease October 5th, 2018

DNA drives design principles for lighter, thinner optical displays: Lighter gold nanoparticles could replace thicker, heavier layered polymers used in displays’ back-reflectors June 27th, 2018

Discoveries

Using bacteria to create a water filter that kills bacteria: New technology can clean water twice as fast as commercially available ultrafiltration membranes January 18th, 2019

Kiel physicists discover new effect in the interaction of plasmas with solids January 18th, 2019

Brilliant glow of paint-on semiconductors comes from ornate quantum physics January 18th, 2019

Light up logic: Engineers from UTokyo and RIKEN perform computational logic with light January 18th, 2019

Materials/Metamaterials

Brilliant glow of paint-on semiconductors comes from ornate quantum physics January 18th, 2019

Drilling speed increased by 20% – yet another upgrade in the oil & gas sector made possible by graphene nanotubes January 15th, 2019

New materials could help improve the performance of perovskite solar cells January 11th, 2019

Spintronics 'miracle material' put to the test: Physicists build devices using mineral perovskite January 11th, 2019

Announcements

Nanometrics to Announce Fourth Quarter and Full Year Financial Results on February 5, 2019 January 18th, 2019

ULVAC Inc., and Oxford Instruments Plasma Technology collaborate to bring Atomic Scale Processing solutions to the Japanese Power and RF markets January 18th, 2019

Kiel physicists discover new effect in the interaction of plasmas with solids January 18th, 2019

Brilliant glow of paint-on semiconductors comes from ornate quantum physics January 18th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Using bacteria to create a water filter that kills bacteria: New technology can clean water twice as fast as commercially available ultrafiltration membranes January 18th, 2019

Kiel physicists discover new effect in the interaction of plasmas with solids January 18th, 2019

Brilliant glow of paint-on semiconductors comes from ornate quantum physics January 18th, 2019

New materials could help improve the performance of perovskite solar cells January 11th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project