Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Chemists strike nano-gold: 4 new atomic structures for gold nanoparticle clusters: Research builds upon work by Nobel Prize-winning team from Stanford University

Xiao Cheng Zeng, chemistry professor at the University of Nebraska-Lincoln, is shown with a model of a gold nano-cluster.
CREDIT: Craig Chandler/University Communications/University of Nebraska-Lincoln
Xiao Cheng Zeng, chemistry professor at the University of Nebraska-Lincoln, is shown with a model of a gold nano-cluster.

CREDIT: Craig Chandler/University Communications/University of Nebraska-Lincoln

Abstract:
Arranging gold, atomic staples and electron volts, chemists have drafted new nanoscale blueprints for low-energy structure capable of housing pharmaceuticals and oxygen atoms.

Chemists strike nano-gold: 4 new atomic structures for gold nanoparticle clusters: Research builds upon work by Nobel Prize-winning team from Stanford University

Lincoln, NE | Posted on April 28th, 2015

Led by University of Nebraska-Lincoln chemistry professor Xiao Cheng Zeng, and former UNL visiting professor Yi Gao, new research has revealed four atomic arrangements of a gold nanoparticle cluster. The arrangements exhibit much lower potential energy and greater stability than a standard-setting configuration reported last year by a Nobel Prize-winning team from Stanford University.

The modeling of these arrangements could inform the cluster's use as a transporter of pharmaceutical drugs and as a catalyst for removing pollutants from vehicular emissions or other industrial byproducts, Zeng said.

Zeng and his colleagues unveiled the arrangements for a molecule featuring 68 gold atoms and 32 pairs of bonded sulfur-hydrogen atoms. Sixteen of the gold atoms form the molecule's core; the remainder bond with the sulfur and hydrogen to form a protective coating that stems from the core.

Differences in atomic arrangements can alter molecular energy and stability, with less potential energy making for a more stable molecule. The team calculates that one of the arrangements may represent the most stable possible structure in a molecule with its composition.

"Our group has helped lead the front on nano-gold research over the past 10 years," said Zeng, an Ameritas University Professor of chemistry. "We've now found new coating structures of much lower energy, meaning they are closer to the reality than (previous) analyses. So the deciphering of this coating structure is major progress."

The researchers reported their findings in the April 24 edition of Science Advances, an online journal from the American Association for the Advancement of Science.

The structure of the molecule's gold core was previously detailed by the Stanford team. Building on this, Zeng and his colleagues used a computational framework dubbed "divide-and-protect" to configure potential arrangements of the remaining gold atoms and sulfur-hydrogen pairs surrounding the core.

The researchers already knew that the atomic coating features staple-shaped linkages of various lengths. They also knew the potential atomic composition of each short, medium and long staple -- such as the fact that a short staple consists of two sulfur atoms bonded with one gold.

By combining this information with their knowledge of how many atoms reside outside the core, the team reduced the number of potential arrangements from millions to mere hundreds.

"We divided 32 into the short, middle and long (permutations)," said Zeng, who helped develop the divide-and-protect approach in 2008. "We lined up all those possible arrangements, and then we computed their energies to find the most stable ones.

"Without those rules, it's like finding a needle in the Platte River. With them, it's like finding a needle in the fountain outside the Nebraska Union. It's still hard, but it's much more manageable. You have a much narrower range."

The researchers resorted to the computational approach because of the difficulty of capturing the structure via X-ray crystallography or single-particle transmission electron microscopy, two of the most common imaging methods at the atomic scale.

Knowing the nanoparticle's most stable configurations, Zeng said, could allow biomedical engineers to identify appropriate binding sites for drugs used to treat cancer and other diseases. The findings could also optimize the use of gold nanoparticles in catalyzing the oxidation process that transforms dangerous carbon monoxide emissions into the less noxious carbon dioxide, he said.

###

Zeng and Gao co-authored the study with Wen Wu Xu, who works with Gao at the Shanghai Institute of Applied Physics. The team, which received support from the U.S. Army Research Laboratory and UNL's Nebraska Center for Energy Sciences Research, performed most of its computational analyses through the Holland Computing Center.

####

For more information, please click here

Contacts:
Xiao Cheng Zeng

402-472-9894

Copyright © University of Nebraska-Lincoln

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Download article:

Related News Press

News and information

Elliot Scientific now representing Raman Imaging specialists WITec in the UK and Eire - Unique correlative analysis in one instrument: Raman/AFM, Raman/SNOM December 10th, 2018

A new 'spin' on kagome lattices: Team's findings shed new light on the presence of spin-orbit coupling and topological spin textures in kagome lattices December 9th, 2018

Milestone for bERLinPro: Photocathodes with high quantum efficiency December 8th, 2018

Harnessing the power of 'spin orbit' coupling in silicon: Scaling up quantum computation December 7th, 2018

Chemistry

New catalyst produces cheap hydrogen November 30th, 2018

Nanotech Artisans Sculpt with DNA November 5th, 2018

Laboratories

Scientists produce 3D chemical maps of single bacteria: Researchers at NSLS-II used ultrabright x-rays to generate 3-D nanoscale maps of a single bacteria's chemical composition with unparalleled spatial resolution November 16th, 2018

Unlocking the Secrets of Metal-Insulator Transitions: X-ray photon correlation spectroscopy at NSLS-II's CSX beamline used to understand electrical conductivity transitions in magnetite November 8th, 2018

Nanotech Artisans Sculpt with DNA November 5th, 2018

Govt.-Legislation/Regulation/Funding/Policy

A new 'spin' on kagome lattices: Team's findings shed new light on the presence of spin-orbit coupling and topological spin textures in kagome lattices December 9th, 2018

It's not a shock: Better bandage promotes powerful healing November 29th, 2018

French Researchers Extend Reach of Mass Spectrometry with Nanomechanical Resonators: Neutral Mass Spectrometry’ Fills Gap In Existing Weighing Technologies November 27th, 2018

Three CEA Projects Awarded European Research Council Synergy Grants November 26th, 2018

Nanomedicine

A*STAR, One BioMed launch S$9m joint lab to make diagnostic kit for infectious diseases December 3rd, 2018

New research could fine-tune the gene scissors CRISPR December 1st, 2018

It's not a shock: Better bandage promotes powerful healing November 29th, 2018

Arrowhead Pharmaceuticals to Webcast 2018 Fiscal Year End Results November 27th, 2018

Discoveries

A new 'spin' on kagome lattices: Team's findings shed new light on the presence of spin-orbit coupling and topological spin textures in kagome lattices December 9th, 2018

Milestone for bERLinPro: Photocathodes with high quantum efficiency December 8th, 2018

Harnessing the power of 'spin orbit' coupling in silicon: Scaling up quantum computation December 7th, 2018

Iran Develops Water-Repellent Nano-Paint December 5th, 2018

Announcements

Elliot Scientific now representing Raman Imaging specialists WITec in the UK and Eire - Unique correlative analysis in one instrument: Raman/AFM, Raman/SNOM December 10th, 2018

A new 'spin' on kagome lattices: Team's findings shed new light on the presence of spin-orbit coupling and topological spin textures in kagome lattices December 9th, 2018

Milestone for bERLinPro: Photocathodes with high quantum efficiency December 8th, 2018

Harnessing the power of 'spin orbit' coupling in silicon: Scaling up quantum computation December 7th, 2018

Military

Bending light around tight corners without backscattering losses: New photonic crystal waveguide based on topological insulators paves the way to build futuristic light-based computers November 19th, 2018

'Smart skin' simplifies spotting strain in structures: Rice U. invention can use fluorescing carbon nanotubes to reveal stress in aircraft, structures November 15th, 2018

Epoxy compound gets a graphene bump: Rice scientists combine graphene foam, epoxy into tough, conductive composite November 14th, 2018

Unlocking the Secrets of Metal-Insulator Transitions: X-ray photon correlation spectroscopy at NSLS-II's CSX beamline used to understand electrical conductivity transitions in magnetite November 8th, 2018

Environment

The materials engineers are developing environmentally friendly materials: The materials engineers are developing environmentally friendly materials for producing smart textiles November 2nd, 2018

Ultrasensitive toxic gas detector October 31st, 2018

Study provides insight into how nanoparticles interact with biological systems: Findings can help scientists engineer nanoparticles that are ‘benign by design’ October 18th, 2018

Silver nanoparticles are toxic for aquatic organisms: A research team at the UPV/EHU-University of the Basque Country has analysed how zebrafish are affected in the long term by exposure to silver particles September 19th, 2018

Automotive/Transportation

Bosch provides customized IoT and Industry 4.0 solutions: Bosch Mondeville and Bosch Connected Devices and Solutions collaborate to meet a wide variety of customer requirements November 16th, 2018

GLOBALFOUNDRIES, indie Semiconductor Deliver Performance-Enhanced Microcontrollers for Automotive Applications: 55nm LPx platform, with SST’s highly reliable embedded SuperFlash®, increases performance and energy efficiency for automotive applications November 13th, 2018

GLOBALFOUNDRIES, indie Semiconductor Deliver Performance-Enhanced Microcontrollers for Automotive Applications: 55nm LPx platform, with SST’s highly reliable embedded SuperFlash®, increases performance and energy efficiency for automotive applications November 13th, 2018

IEDM - CEA-Leti Will Present 11 Papers and Host Workshop on Disruptive Technologies for Data Management November 7th, 2018

Industrial

Iran Develops Water-Repellent Nano-Paint December 5th, 2018

CEA-Leti Moves 3D Sequential Integration Closer to Commercialization: Paper Presented at IEDM 2018 Describes Breakthroughs in Six Process Steps December 3rd, 2018

CEA-Leti and Silvaco to Develop GAA SPICE Compact Models for Circuit Design and Technology Co-optimization: Project Combines CEA-Leti’s Compact Modeling Expertise And Silvaco’s Extensive Experience in SPICE Compact Model Integration and Extraction December 3rd, 2018

CEA-Leti Extends 300mm Line and Adds Avenues for Developing Disruptive Technologies: Execution Relies on CEA-Leti’s Fully Implemented Technology With Module-Level Innovations & Devices and Their Architectures December 3rd, 2018

Research partnerships

Three CEA Projects Awarded European Research Council Synergy Grants November 26th, 2018

Researchers create new 'smart' material with potential biomedical, environmental uses November 23rd, 2018

Cea-Leti and imec Launch Strategic Partnership to Develop AI and Quantum Computing November 23rd, 2018

Epoxy compound gets a graphene bump: Rice scientists combine graphene foam, epoxy into tough, conductive composite November 14th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project