Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > In quest for better lithium-air batteries, chemists boost carbon's stability: Nanoparticle coatings improve stability, cyclability of '3DOm' carbon

Chemists from Boston College and UMass Amherst applied two nano-scale coatings to a unique form of carbon, known as 3DOm. The resulting boost in 3DOm's stability produced performance gains that could lead to the material's use in lithium-air batteries.
CREDIT: Boston College
Chemists from Boston College and UMass Amherst applied two nano-scale coatings to a unique form of carbon, known as 3DOm. The resulting boost in 3DOm's stability produced performance gains that could lead to the material's use in lithium-air batteries.

CREDIT: Boston College

Abstract:
To power a car so it can travel hundreds of miles at a time, lithium-ion batteries of the future are going to have to hold more energy without growing too big in size.

In quest for better lithium-air batteries, chemists boost carbon's stability: Nanoparticle coatings improve stability, cyclability of '3DOm' carbon

Chestnut Hill, MA | Posted on February 25th, 2015

That's one of the dilemmas confronting efforts to power cars through re-chargeable battery technologies. In order to hold enough energy to enable a car trip of 300-500 miles before re-charging, current lithium-ion batteries become too big or too expensive.

In the search for the "post-lithium-ion" battery, Associate Professor of Chemistry Dunwei Wang has been developing materials that might one day enable the manufacture of new batteries capable of meeting power demands within the size and cost constraints of car makers and other industries.

In a recent report published in the German journal Angewandt Chemie, Wang and a colleague from the University of Massachusetts Amherst unveiled a new method of stabilizing carbon - a central structural component of any battery - that could pave the way to new performance standards in the hunt for a lithium-ion components.

Central to the search for improved performance is the ability to shed weight and costly chemical components. Researchers pursuing a "lithium-air" battery have focused on a chemical reaction of lithium and oxygen, which can be pulled from the air. But the materials used to generate this reaction have shown poor life cycles, lasting through just a few charges.

The culprit, said Wang, is the instability of carbon, an essential structural support to a battery's electrode, a conductor where charges collect and dispense.

"Carbon is used in every battery because it has that combination of low cost, light weight and conductivity," said Wang. "You can't just scrap it."

So Wang and UMass Assistant Professor of Chemical Engineering Wei Fan set to work improving the performance capabilities of a newly engineered form of carbon fabricated by Fan. It's called three-dimensionally ordered mesoporous (3DOm) carbon and scientists value it for its highly ordered structure.

Employing a technique called atomic layer deposition (ALD), the researchers grew a thin coating of iron oxide on the carbon, a step that enhanced the reactivity between lithium and oxygen and improved performance on the charge cycle. Next, they used ALD to apply a coating of palladium nanoparticles, which effectively reduced carbon's deteriorative reaction with oxygen and improved the discharge cycle.

Their initial tests on the material showed marked improvement in performance.

"We demonstrated that a particular form of carbon can be used to support a new type of chemistry that allows for energy storage with the promise of five to 10 times more energy density than state-of-the-art lithium-ion batteries we see today," said Wang. "We see this as significantly improving the cyclability of the battery, which is a key issue."

Wang said the findings show 3DOm carbon can meet new performance standards when it is stabilized.

"The key innovation we make here is that 3DOm carbon is stable - we have stabilized something that was not previously stable," said Wang.

####

For more information, please click here

Contacts:
Ed Hayward

617-552-4826

Copyright © Boston College

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Discoveries

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Materials/Metamaterials/Magnetoresistance

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Energy

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

The efficient perovskite cells with a structured anti-reflective layer – another step towards commercialization on a wider scale October 6th, 2023

Automotive/Transportation

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

New designs for solid-state electrolytes may soon revolutionize the battery industry: Scientists achieve monumental improvements in lithium-metal-chloride solid-state electrolytes November 3rd, 2023

Previously unknown pathway to batteries with high energy, low cost and long life: Newly discovered reaction mechanism overcomes rapid performance decline in lithium-sulfur batteries September 8th, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Industrial

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

Nanotubes: a promising solution for advanced rubber cables with 60% less conductive filler June 1st, 2022

Protective equipment with graphene nanotubes meets the strictest ESD safety standards March 25th, 2022

OCSiAl receives the green light for Luxembourg graphene nanotube facility project to power the next generation of electric vehicles in Europe March 4th, 2022

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project