Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Universality of charge order in cuprate superconductors: Charge order has been established in another class of cuprate superconductors, highlighting the importance of the phenomenon as a general property of these high-Tc materials

Crystal structures of HgBa2CuO4+ and YBa2Cu3O6+
Crystal structures of HgBa2CuO4+ and YBa2Cu3O6+

Abstract:
The discovery of superconductivity in cuprates, a class of ceramic materials, in 1986 has boosted an impressive effort of research all around the world. These materials still hold the record for the temperature where lossless conduction of electricity can be obtained. This is why they are called high-Tc superconductors, despite the fact that high-Tc means only minus 140 degrees centigrade. While this seems rather low, it is in fact very high compared to classical superconductors discovered at the beginning of the 20th century, where cooling close to the absolute temperature zero, minus 274 degrees, is required for the emergence of this exotic, yet very useful property. The exciting jump of the transition temperature with the discovery of the high-Tc superconductors still nurtures hope that lossless conduction of electricity may be possible close to room temperature some day.

Universality of charge order in cuprate superconductors: Charge order has been established in another class of cuprate superconductors, highlighting the importance of the phenomenon as a general property of these high-Tc materials

Berlin, Germany | Posted on December 22nd, 2014

Still not well understood: High Tc Superconductivity

The phenomenon of superconductivity is well understood -- for the classical superconductors. When not being in the superconducting state, classical superconductors behave like metals, and superconductivity emerges from this metallic state by the pairing of electrons. Pairing of mobile charge carriers is also what is behind the superconductivity of the cuprates. However, these ceramic superconductors are materials, where even the non-superconducting state is hardly understood, let alone the mechanism behind the pairing of the charge carriers. This is why new insights into the properties of the cuprates still keep scientists excited -- even almost 30 years after the discovery of high-Tc superconductivity.

When Copper and Oxygen atoms form planes

The cuprates come as a zoo of materials with abbreviations like LBCO, YBCO, LSCO, BSCO, and many more, with chemical formulae of La2-xBaxCuO4, YBa2Cu3O6+, La2-xSrxCuO4, Bi2Sr2-xLaxCuO6+. All these materials have one common feature: Copper and oxygen atoms are arranged in planes, forming quasi two-dimensional objects. Introducing charge carriers into the copper oxygen planes does not result in a simple metallic behavior. Rather, a complexity of unusual phases around superconductivity is observed, and how the superconducting state develops from these exotic states of matter has escaped explanation up to now.

Charge order in cuprates

One of the phenomena observed in high-Tc cuprates is the so-called charge order. Here, the charge carriers that are introduced into the ceramics to make them conducting in the first place, tend to form a regular pattern of stripes in the copper oxygen planes. Being placed in a regular arrangement renders the charge carrier less mobile and impedes the formation of the superconducting state: Charge order is antagonistic to superconductivity. This is of course of highest importance for exploring the limits of superconductivity and understanding the phenomenon itself. Charge order was observed in one of the cuprate classes already in 1995. It took, however, quite some time to reveal that many other classes of cuprates exhibit the same behavior, and only in recent years evidence for an ubiquitous phenomenon was accumulated, with the important observation of charge order in YBCO in 2012. All these experiments provided evidence that this phenomenon is a common property of charge carriers in copper oxygen planes in the cuprates.

New results show universal pattern and interesting relations between effects

Initiated by researchers from Minnesota, an international team of scientists has now identified charge order in HgBa2CuO4 , emphasizing this universal behavior: HgBa2CuO4 is a pristine cuprate material with a rather simple crystal structure that superconducts at temperatures as high as minus 175 degrees centigrade. A further important result of the study is the finding that the charge order is closely related to another property of the material. When a very high magnetic field is applied, superconductivity is destroyed, and the electrical resistance goes up and down with changing magnetic field, which is known as quantum oscillations. Finding a universal connection between the period of these quantum oscillations and the spatial period of the charge order is one of the achievements of the study. Linking such seemingly distinct observations for a such a complex material is of utmost importance, as it helps to tell which effect is important and which is only spurious.

The tool: XUV-Diffractometer at UE46_PGM1-BEamline of BESSY II

An important part of this research was carried out with the XUV diffractometer at the HZB, employing the particularly sensitive method of resonant soft x-ray diffraction. This method has already been used successfully to detect the weak charge order in a number of materials in the past, in close cooperation with scientists from HZB who operate the instrument at the UE46_PGM1 beamline at BESSY II. The results are now published in Nature Communications. 'After decades of research, the unusual states of matter in the cuprates and their relation to the phenomenon of high-Tc superconductivity are still puzzling the scientists', says Dr. Eugen Weschke from the Department Quantum Phenomena in Novel Materials at HZB, ' the observation of charge order in this clean model system adds an important piece to the systematics of the cuprates, and we are happy having contributed to these studies by a number of experiments here at HZB by now.'

####

For more information, please click here

Contacts:
Eugen Weschke

(030) 8062-13409
Fax (030) 8062-15752

Dr. Enrico Schierle
Tel (030) 8062-15760
Fax (030) 8062-15752

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Referenz: W. Tabis et al., Charge order and its connection with Fermi-liquid charge transport in a pristine high-Tc cuprate, Nature Communications 5, 5875 (2014):

Related News Press

News and information

NUS researchers develop stretchable, self-healing and illuminating material for ‘invincible’ light-emitting devices: Promising applications include damage-proof flexible display screens and illuminating electronic skin for autonomous soft robots May 31st, 2020

The concept of creating «brain-on-chip» revealed: A team of scientists is working to create brain-like memristive systems providing the highest degree of adaptability for implementing compact and efficient neural interfaces, new-generation robotics, artificial intelligence, perso May 29th, 2020

SUTD developed a simple method to print planar microstructures of polysiloxane: The new method, embedded ink writing (EIW), enables direct writing of polysiloxane which helps in the fabrication of microfluidic devices, flexible wearables, and soft actuators May 29th, 2020

Researchers develop experimental rapid COVID-19 test using nanoparticle technique: Advanced nanotechnology provides 'naked eye' visual detection of virus in 10 minutes May 29th, 2020

Physics

An EPiQS Pursuit: Physicist Andrea Young is chosen to receive an Experimental Investigator award from the Moore Foundation May 28th, 2020

MSU scientists solve half-century-old magnesium dimer mystery May 22nd, 2020

Scientists break the link between a quantum material's spin and orbital states: The advance opens a path toward a new generation of logic and memory devices based on orbitronics that could be 10,000 times faster than today's May 15th, 2020

Wiring the quantum computer of the future: A novel simple build with existing technology: The basic units of a quantum computer can be rearranged in 2D to solve typical design and operation challenges April 24th, 2020

Superconductivity

Scientists use light to accelerate supercurrents, access forbidden light, quantum world May 21st, 2020

Electrons break rotational symmetry in exotic low-temp superconductor: Scientists previously observed this peculiar behavior in other materials whose ability to conduct electricity without energy loss cannot be explained by standard theoretical frameworks May 19th, 2020

Discoveries

NUS researchers develop stretchable, self-healing and illuminating material for ‘invincible’ light-emitting devices: Promising applications include damage-proof flexible display screens and illuminating electronic skin for autonomous soft robots May 31st, 2020

Argonne researchers create active material out of microscopic spinning particles May 29th, 2020

Configurable circuit technology poised to expand silicon photonic applications: Chips can be programmed after fabrication for use in communication, computing or biomedical applications May 29th, 2020

SUTD developed a simple method to print planar microstructures of polysiloxane: The new method, embedded ink writing (EIW), enables direct writing of polysiloxane which helps in the fabrication of microfluidic devices, flexible wearables, and soft actuators May 29th, 2020

Announcements

NUS researchers develop stretchable, self-healing and illuminating material for ‘invincible’ light-emitting devices: Promising applications include damage-proof flexible display screens and illuminating electronic skin for autonomous soft robots May 31st, 2020

Configurable circuit technology poised to expand silicon photonic applications: Chips can be programmed after fabrication for use in communication, computing or biomedical applications May 29th, 2020

SUTD developed a simple method to print planar microstructures of polysiloxane: The new method, embedded ink writing (EIW), enables direct writing of polysiloxane which helps in the fabrication of microfluidic devices, flexible wearables, and soft actuators May 29th, 2020

Researchers develop experimental rapid COVID-19 test using nanoparticle technique: Advanced nanotechnology provides 'naked eye' visual detection of virus in 10 minutes May 29th, 2020

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Argonne researchers create active material out of microscopic spinning particles May 29th, 2020

Configurable circuit technology poised to expand silicon photonic applications: Chips can be programmed after fabrication for use in communication, computing or biomedical applications May 29th, 2020

The concept of creating «brain-on-chip» revealed: A team of scientists is working to create brain-like memristive systems providing the highest degree of adaptability for implementing compact and efficient neural interfaces, new-generation robotics, artificial intelligence, perso May 29th, 2020

SUTD developed a simple method to print planar microstructures of polysiloxane: The new method, embedded ink writing (EIW), enables direct writing of polysiloxane which helps in the fabrication of microfluidic devices, flexible wearables, and soft actuators May 29th, 2020

Quantum nanoscience

An EPiQS Pursuit: Physicist Andrea Young is chosen to receive an Experimental Investigator award from the Moore Foundation May 28th, 2020

Scientists break the link between a quantum material's spin and orbital states: The advance opens a path toward a new generation of logic and memory devices based on orbitronics that could be 10,000 times faster than today's May 15th, 2020

Oxford Instruments’ Plasma Technology and NanoScience businesses collaborate with the consortium, that wins a landmark grant to boost quantum technologies in the UK April 28th, 2020

FSU researchers discover new structure for promising class of materials April 24th, 2020

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project