Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Aromatic food chemistry to the making of copper nanowires

Abstract:
A team of scientists from National University of Singapore has revealed the use of food chemistry-Maillard reaction to synthesize cheap and abundant copper nanowires for large scale transparent conductor.

Aromatic food chemistry to the making of copper nanowires

Singapore | Posted on November 24th, 2014

The food chemistry-Maillard reaction is responsible for many colors and flavors in foods  roasting of coffee, baking of bread and sizzling of meat. Scientists from National University of Singapore, Ghim Wei Ho and her team have made use of this ingenious food chemistry to ‘cook' their copper nanowires. Naturally, a lingering chocolate-like aroma was detected during the copper nanowires synthesis.

Metallic nanowires especially cheap and abundant copper nanowires have huge potential applications in miniaturized interconnects, sensors and transparent conductors featuring solar cells, touch screens and LED display. Traditionally, indium tin oxide (ITO) is the most widely used transparent conductor in today's consumer technology. However, alternatives are being sought due to the high cost and finite supply of indium. Films made from copper nanowires are promising candidates, exhibiting high conductivity and optical transparency in addition to being flexible.

Copper nanowires are typically synthesized by the reduction of Cu2+ in solution to its metal form using hydrazine and ethylenediamine, both of which are notoriously hazardous and toxic. Kevin Moe, the main researcher has uncovered a green approach that formulates copper atoms in water to form untangled metallic state nanowires. The thin and optimized length nanowires can then be transformed into smooth transparent, conductive films easily and quickly virtually onto any substrates  glass, plastic or even super hydrophobic lotus leaf.

The Maillard reaction between amino acids and reducing sugar occurs at approximately 140-165°C. By varying the type and concentration of reducing sugar and amine in the presence of Cu2+, the team has been able to synthesize copper nanowires with a tuneable aspect ratio via a green route for the first time. Through the addition of glycine, the copper nanowires length could be systematically tuned from several millimeters down to hundreds of micron. Such capability should not be underestimated as it serves to prevent the nanowires from getting irreversibly entangled, allowing excellent nanowire dispersions without the need for surfactants. The concomitant increase in nanowire's diameter to ~150 nm allows improved sheet resistances without compromising optical transparencies. The well-dispersed copper nanowires could be coated uniformly regardless of flat or curve geometries and wetting or non-wetting surfaces in every practical sense.

The findings have been reported in the Green Chemistry ("Facile control of copper nanowire dimensions via the Maillard reaction: using food chemistry for fabricating large-scale transparent flexible conductors").

####

For more information, please click here

Contacts:
Ghim Wei Ho
Phone: 65-65168121

Copyright © National University of Singapore

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemistry

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Materials/Metamaterials/Magnetoresistance

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Food/Agriculture/Supplements

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

Silver nanoparticles: guaranteeing antimicrobial safe-tea November 17th, 2023

Night-time radiative warming using the atmosphere November 17th, 2023

DGIST and New Life Group launched a research project on "Functional beauty and health products using the latest nanotechnology" May 12th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project