Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > The "Cyberwar" Against Cancer Gets a Boost from Intelligent Nanocarriers: TAU researcher advances novel strategy to fight cancer by shoring up the immune system

Abstract:
Two years ago, Prof. Eshel Ben-Jacob of Tel Aviv University's School of Physics and Astronomy and Rice University's Center for Theoretical Biological Physics made the startling discovery that cancer, like an enemy hacker in cyberspace, targets the body's communication network to inflict widespread damage on the entire system. Cancer, he found, possessed special traits for cooperative behavior and used intricate communication to distribute tasks, share resources, and make decisions.

The "Cyberwar" Against Cancer Gets a Boost from Intelligent Nanocarriers: TAU researcher advances novel strategy to fight cancer by shoring up the immune system

New York, NY | Posted on October 7th, 2014

In research published in the Early Edition of the Proceedings of the National Academy of Sciences, Prof. Ben-Jacob and researchers from Rice University and the University of Texas M.D. Anderson Cancer Center, the leading cancer treatment center in the U.S., offer new insight into the lethal interaction between cancer cells and the immune system's communications network. Prof. Ben-Jacob and the study co-authors developed a computer program that models a specific channel of cell-to-cell communication involving exosomes (nanocarriers with crucial cellular "intelligence") that both cancer and immune cells harness to communicate with other cells.

"Recent research has found that cancer is already adept at using a kind of 'cyberwarfare' against the immune system. We studied the interplay between cancer and the immune system to see how we might be able to shift the balance against cancer," said Prof. Ben-Jacob, noting a difference between the innate and the adaptive qualities of the immune system. "In the beginning, cancer is inhibited by the body's innate immunity. But once cancer escapes the immunity, there is a race between the progression of cancer and the ability of the adaptive immune system to recognize and act against it."

Cyberwarfare of the body

"What we are dealing with is cyberwarfare, pure and simple. Cancer uses the immune systems' own communications network to attack not the soldiers but the generals that are coordinating the body's defense," said Prof. Ben-Jacob.

To better understand the role of exosome-mediated cell-to-cell communication in the battle between cancer and the immune system, the researchers created a computer model that captured the exosomal exchange between cancer cells, dendritic cells, and the other cells in the immune system.

The new model is based on earlier research, which showed that dendritic cells, mediators between the body's innate and adaptive immune systems (the former protects against all threats at all times and the latter guards more efficiently against specific, established dangers), employed exosomes to fulfil their task. The researchers discovered that, overtaken by cancer, these nanocarriers, which contain such vital components as signaling proteins, RNA snippets, and microRNAs, can command cells to change their tasks, placing the entire system at risk.

Finding a better balance between the strong and the weak

According to the new research, three possible cancer states can exist: strong, intermediary, and weak. The intermediary state — in which cancer is neither strong nor weak and in which the immune system is on high alert — could be the key to a new therapeutic approach with reduced side effects. Prof. Ben-Jacob believes it is possible to force cancer from a strong to moderate state, and then from a moderate to weak state, by alternating cycles of radiation or chemotherapy with immune-boosting treatments.

"Our first important discovery is that this situation is due to the exosome-based cyberwar between cancer and the immune system," said Prof. Ben-Jacob. "Without exosomes, the two possible states are only strong-weak and weak-strong. With exosomes, an intermediary state opens a new way to treat cancer using very a different approach."

Prof. Ben-Jacob likened the exchange to a tug-of-war between cancer and the immune system. "The challenge is to be familiar with the battlefield so that we can manipulate cancer therapies to change the balance in favor of the immune system. When cancer is detected, it is almost always in the context of a cancer-immunity competition," said Prof. Ben-Jacob. "We showed that the way to stop and reverse tumor progression without causing strong side effects is an individualized approach of mixed treatments — i.e., four days of radiation followed by a few days of immune system boosting, followed again by four days of radiation, and so on. If provided in the right order, the treatments could indeed shift the balance toward the immune system's 'victory' in reducing the cancer to the moderate-strong state."

The study was supported by the Cancer Prevention and Research Institute of Texas, the National Science Foundation, and the Tauber Family Funds.

####

For more information, please click here

Contacts:
George Hunka

212-742-9070

Copyright © American Friends of Tel Aviv University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Cancer

University of Toronto researchers discover new lipid nanoparticle that shows muscle-specific mRNA delivery, reduces off-target effects: Study findings make significant contribution to generating tissue-specific ionizable lipids and prompts rethinking of mRNA vaccine design princi December 8th, 2023

Super-efficient laser light-induced detection of cancer cell-derived nanoparticles: Skipping ultracentrifugation, detection time reduced from hours to minutes! October 6th, 2023

The medicine of the future could be artificial life forms October 6th, 2023

Chung-Ang University researchers develop novel DNA biosensor for early diagnosis of cervical cancer: The electrochemical sensor, made of a graphitic nano-onion/molybdenum disulfide nanosheet composite, detects human papillomavirus (HPV)-16 and HPV-18, with high specificity September 8th, 2023

Govt.-Legislation/Regulation/Funding/Policy

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

Nanomedicine

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Discoveries

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project