Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Elusive Quantum Transformations Found Near Absolute Zero: Brookhaven Lab and Stony Brook University researchers measured the quantum fluctuations behind a novel magnetic material's ultra-cold ferromagnetic phase transition

Rendering of the near–perfect crystal structure of the yttrium–iron–aluminum compound used in the study. The two–dimensional layers of the material allowed the scientists to isolate the magnetic ordering that emerged near absolute zero.
Rendering of the near–perfect crystal structure of the yttrium–iron–aluminum compound used in the study. The two–dimensional layers of the material allowed the scientists to isolate the magnetic ordering that emerged near absolute zero.

Abstract:
Heat drives classical phase transitions-think solid, liquid, and gas-but much stranger things can happen when the temperature drops. If phase transitions occur at the coldest temperatures imaginable, where quantum mechanics reigns, subtle fluctuations can dramatically transform a material.

Elusive Quantum Transformations Found Near Absolute Zero: Brookhaven Lab and Stony Brook University researchers measured the quantum fluctuations behind a novel magnetic material's ultra-cold ferromagnetic phase transition

Upton, NY | Posted on September 15th, 2014

Scientists from the U.S. Department of Energy's Brookhaven National Laboratory and Stony Brook University have explored this frigid landscape of absolute zero to isolate and probe these quantum phase transitions with unprecedented precision.

"Under these cold conditions, the electronic, magnetic, and thermodynamic performance of metallic materials is defined by these elusive quantum fluctuations," said study coauthor Meigan Aronson, a physicist at Brookhaven Lab and professor at Stony Brook. "For the first time, we have a picture of one of the most fundamental electron states without ambient heat obscuring or complicating those properties."

The scientists explored the onset of ferromagnetism-the same magnetic polarization exploited in advanced electronic devices, electrical motors, and even refrigerator magnets-in a custom-synthesized iron compound as it approached absolute zero.

The research provides new methods to identify and understand novel materials with powerful and unexpected properties, including superconductivity-the ability to conduct electricity with perfect efficiency. The study will be published online Sept. 15, 2014, in the journal Proceedings of the National Academy of Sciences.

"Exposing this quantum phase transition allows us to predict and potentially boost the performance of new materials in practical ways that were previously only theoretical," said study coauthor and Brookhaven Lab physicist Alexei Tsvelik.

Mapping Quantum Landscapes

The presence of heat complicates or overpowers the so-called quantum critical fluctuations, so the scientists conducted experiments at the lowest possible temperatures.

"The laws of thermodynamics make absolute zero unreachable, but the quantum phase transitions can actually be observed at nonzero temperatures," Aronson said. "Even so, in order to deduce the full quantum mechanical nature, we needed to reach temperatures as low as 0.06 Kelvin-much, much colder than liquid helium or even interstellar space."

The researchers used a novel compound of yttrium, iron, and aluminum (YFe2Al10), which they discovered while searching for new superconductors. This layered, metallic material sits poised on the threshold of ferromagnetic order, a key and very rare property.

"Our thermodynamic and magnetic measurements proved that YFe2Al10 becomes ferromagnetic exactly at absolute zero-a sharp contrast to iron, which is ferromagnetic well above room temperature," Aronson said. "Further, we used magnetic fields to reverse this ferromagnetic order, proving that quantum fluctuations were responsible."

The collaboration produced near-perfect samples to prove that material defects could not impact the results. They were also the first group to prepare YFe2Al10 in single-crystal form, which allowed them to show that the emergent magnetism resided within two-dimensional layers.

"As the ferromagnetism decayed with heat or applied magnetic fields, we used theory to identify the spatial and temporal fluctuations that drove the transition," Tsvelik said. "That fundamental information provides insight into countless other materials."

Quantum Clues to New Materials

The scientists plan to modify the composition of YFe2Al10 so that it becomes ferromagnetic at nonzero temperatures, opening another window onto the relationship between temperature, quantum transitions, and material performance.

"Robust magnetic ordering generally blocks superconductivity, but suppressing this state might achieve the exact balance of quantum fluctuations needed to realize unconventional superconductivity," Tsvelik said. "It is a matter of great experimental and theoretical interest to isolate these competing quantum interactions that favor magnetism in one case and superconductivity on the other."

Added Aronson, "Having more examples displaying this zero-temperature interplay of superconductivity and magnetism is crucial as we develop a holistic understanding of how these phenomena are related and how we might ultimately control these properties in new generations of materials."

Other authors on this study include Liusuo Wu, Moosung Kim, and Keeseong Park, all of Stony Brook University's Department of Physics and Astronomy.

The research was conducted at Brookhaven Lab's Condensed Matter Physics and Materials Science Department and supported by the U.S. Department of Energy's Office of Science (BES).

####

About Brookhaven National Laboratory
Brookhaven National Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation for the State University of New York on behalf of Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit applied science and technology organization.

For more information, please click here

Contacts:
Justin Eure
(631) 344-2347

or
Peter Genzer
(631) 344-3174

Copyright © Brookhaven National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Physics

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

Scientists use heat to create transformations between skyrmions and antiskyrmions January 12th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Superconductivity

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

Laboratories

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Discoveries

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Materials/Metamaterials/Magnetoresistance

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

Research partnerships

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Quantum nanoscience

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

Bridging light and electrons January 12th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

Physicists ‘entangle’ individual molecules for the first time, hastening possibilities for quantum information processing: In work that could lead to more robust quantum computing, Princeton researchers have succeeded in forcing molecules into quantum entanglement December 8th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project