Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > JPK reports on the use of the NanoTracker Optical Tweezers system at the University of Leiden to study the organisation of genomic DNA

Dr Rosalie Driessen with the JPK NanoTracker™ optical tweezers system located
at the Leiden Institute of Chemistry
Dr Rosalie Driessen with the JPK NanoTracker™ optical tweezers system located at the Leiden Institute of Chemistry

Abstract:
JPK Instruments, a world-leading manufacturer of nanoanalytic instrumentation for research in life sciences and soft matter, reports on the use of the NanoTracker™ Optical Tweezers system in the Laboratory of Molecular Genetics in the Leiden Institute of Chemistry at Leiden University.

JPK reports on the use of the NanoTracker Optical Tweezers system at the University of Leiden to study the organisation of genomic DNA

Berlin, Germany | Posted on September 9th, 2014

Dr Rosalie Driessen is a post-doctoral researcher in the Laboratory of Molecular Genetics, a part of the Leiden Institute of Chemistry at Leiden University. She is studying the organization and dynamics of bacterial chromatin having received her doctorate from the University for her thesis entitled "The architects of crenarchaeal chromatin."

Dr Driessen describes her research and talks about the "hows and whys" of choosing to use optical tweezers in this work. "The research goal of our group is to understand how the genomic DNA is organised, in particular in bacterial and archaeal cells. Proteins that bind to the DNA (so-called nucleoid-associated proteins, chromatin proteins or architectural proteins) play an important role in dynamically shaping and compact the genome. These proteins are also referred to as architectural proteins as they shape the DNA by way of bridging, bending or wrapping the DNA. We want to understand how these proteins exactly function by understanding their DNA-binding properties and how they change the structure of DNA upon binding. In addition to conventional biochemical techniques, we conduct single-molecule experiments using techniques such as atomic force microscopy (AFM), tethered particle motion microscopy, magnetic tweezers and optical tweezers. Using optical tweezers (the JPK NanoTracker™) allows us to evaluate the physical properties of single DNA molecules (by pulling at single DNA molecules) and how this is affected by these specific proteins. We would like to use this in combination with fluorescent microscopy so we can actually visualise the proteins bound to the DNA and correlate this with the force response on the DNA molecule." Dr Driessen works in the laboratory of Assistant Professor Remus Dame. Their on-going work is reported online at molgen.lic.leidenuniv.nl/research/chromatin.

The JPK NanoTracker™ is a very powerful system. For the first time, dual beam force-sensing optical tweezers have been seamlessly integrated on inverted optical microscopes combining advanced optical and confocal techniques including single molecule fluorescence in a small footprint, easy to use system. JPK's unique tweezers technology (also known as a Photonic Force Microscope) enables quantification of molecular, cellular and micro-rheological processes. Applications include molecular motor mechanics, binding/elasticity of DNA and proteins, cell membrane dynamics and particle uptake.

For more details about JPK's NanoTracker™ Optical Tweezers systems and their applications for the bio & nano sciences, please contact JPK on +49 30533112070, visit the web site: www.jpk.com or see more on Facebook: www.jpk.com/facebook and on You Tube: www.youtube.com/jpkinstruments.

####

About JPK Instruments
JPK Instruments AG is a world-leading manufacturer of nanoanalytic instruments - particularly atomic force microscope (AFM) systems and optical tweezers - for a broad range of applications reaching from soft matter physics to nano-optics, from surface chemistry to cell and molecular biology. From its earliest days applying atomic force microscope (AFM) technology, JPK has recognized the opportunities provided by nanotechnology for transforming life sciences and soft matter research. This focus has driven JPK’s success in uniting the worlds of nanotechnology tools and life science applications by offering cutting-edge technology and unique applications expertise. Headquartered in Berlin and with direct operations in Dresden, Cambridge (UK), Singapore, Tokyo, Shanghai (China) and Paris (France), JPK maintains a global network of distributors and support centers and provides on the spot applications and service support to an ever-growing community of researchers.

For more information, please click here

Contacts:
JPK Instruments AG
Bouchéstrasse 12
Haus 2, Aufgang C
Berlin 12435
Germany
T +49 30533112070
F +49 30 5331 22555
www.jpk.com/


Talking Science Limited
39 de Bohun Court
Saffron Walden
Essex CB10 2BA
United Kingdom
T +44(0)1799 521881
M +44(0)7843 012997
www.talking-science.com/

Copyright © JPK Instruments

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Tools

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project