Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Copper shines as flexible conductor

Sensors made with copper are cheap, light, flexible and highly conductive.
Sensors made with copper are cheap, light, flexible and highly conductive.

Abstract:
Bend them, stretch them, twist them, fold them: modern materials that are light, flexible and highly conductive have extraordinary technological potential, whether as artificial skin or electronic paper.

Copper shines as flexible conductor

Victoria, Australia | Posted on August 29th, 2014

Making such concepts affordable enough for general use remains a challenge but a new way of working with copper nanowires and a PVA "nano glue" could be a game-changer.

Previous success in the field of ultra-lightweight "aerogel monoliths" has largely relied on the use of precious gold and silver nanowires.

By turning instead to copper, both abundant and cheap, researchers at Monash University and the Melbourne Centre for Nanofabrication have developed a way of making flexible conductors cost-effective enough for commercial application.

"Aerogel monoliths are like kitchen sponges but ours are made of ultra fine copper nanowires, using a fabrication process called freeze drying," said lead researcher Associate Professor Wenlong Cheng, from Monash University's Department of Chemical Engineering.

"The copper aerogel monoliths are conductive and could be further embedded into polymeric elastomers - extremely flexible, stretchable materials - to obtain conducting rubbers."

Despite its conductivity, copper's tendency to oxidation and the poor mechanical stability of copper nanowire aerogel monoliths mean its potential has been largely unexplored.

The researchers found that adding a trace amount of poly(vinyl alcohol) (PVA) to their aerogels substantially improved their mechanical strength and robustness without impairing their conductivity.

What's more, once the PVA was included, the aerogels could be used to make electrically conductive rubber materials without the need for any prewiring. Reshaping was also easy.

"The conducting rubbers could be shaped in arbitrary 1D, 2D and 3D shapes simply by cutting, while maintaining the conductivities," Associate Professor Cheng said.

The versatility extends to the degree of conductivity. "The conductivity can be tuned simply by adjusting the loading of copper nanowires," he said. "A low loading of nano wires would be appropriate for a pressure sensor whereas a high loading is suitable for a stretchable conductor."

Affordable versions of these materials open up the potential for use in a range of new-generation concepts: from prosthetic skin to electronic paper, for implantable medical devices, and for flexible displays and touch screens.

They can be used in rubber-like electronic devices that, unlike paper-like electronic devices, can stretch as well as bend. They can also be attached to topologically complex curved surfaces, serving as real skin-like sensing devices, Associate Professor Cheng said.

In their report, published recently in ACS Nano, the researchers noted that devices using their copper-based aerogels were not quite as sensitive as those using gold nanowires, but had many other advantages, most notably their low-cost materials, simpler and more affordable processing, and great versatility.

####

For more information, please click here

Contacts:
Glynis Smalley

61-408-027-848

Copyright © Monash University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Download article:

Related News Press

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Flexible Electronics

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

CityU awarded invention: Soft, ultrathin photonic material cools down wearable electronic devices June 30th, 2023

Liquid metal sticks to surfaces without a binding agent June 9th, 2023

Display technology/LEDs/SS Lighting/OLEDs

Light guide plate based on perovskite nanocomposites November 3rd, 2023

Simple ballpoint pen can write custom LEDs August 11th, 2023

Nanomedicine

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Sensors

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

A color-based sensor to emulate skin's sensitivity: In a step toward more autonomous soft robots and wearable technologies, EPFL researchers have created a device that uses color to simultaneously sense multiple mechanical and temperature stimuli December 8th, 2023

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Discoveries

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project