Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Rice physicist emerges as leader in quantum materials research: Nevidomskyy wins both NSF CAREER Award and Cottrell Scholar Award

Andriy Nevidomskyy
CREDIT: Jeff Fitlow/Rice University
Andriy Nevidomskyy

CREDIT: Jeff Fitlow/Rice University

Abstract:
"Emergent" is a key concept in the work of Rice University theoretical physicist Andriy Nevidomskyy, and thanks to two prestigious new awards, it is also an apt description of his work.

Rice physicist emerges as leader in quantum materials research: Nevidomskyy wins both NSF CAREER Award and Cottrell Scholar Award

Houston, TX | Posted on August 20th, 2014

Nevidomskyy, assistant professor of physics and astronomy, has won both a CAREER Award from the National Science Foundation (NSF) and a Cottrell Scholar Award from the Research Corporation for Science Advancement (RCSA).

Nevidomskyy will use the research funding from each award to apply state-of-the-art analytical and computational techniques to investigate the emergence of superconductivity in compounds known as "strange metals." Each grant also includes an educational component, and he will use those funds to help transform his quantum mechanics course for upper-level undergraduates and to help develop a planetarium show to teach school children and their parents about the interactions that form a fabric of the universe.

CAREER Awards support the research and educational development of young faculty whom the NSF expects to become leaders in their field. The five-year grants are worth about $450,000 and are among the NSF's most competitive. The agency grants only about 400 each year across all disciplines.

Cottrell Scholar Awards fund early career faculty in physical sciences and related fields who are committed to excellence in both research and undergraduate teaching at U.S. research universities. RCSA selects only about a dozen recipients each year who it believes "have the potential to change the way science is taught in the U.S." Researchers may only apply once for a Cottrell Scholar Award at the midpoint of their first tenure-track appointment.

"Each of these awards is highly competitive, and I am honored to have been selected," Nevidomskyy said.

He said the common goal of the research component of each award is to study emergent electronic properties in strange metals. "Emergence," in this context, refers to the way nontrivial complex systems and patterns arise out of many relatively simple constituents.

"An everyday example is the complex pattern of a flying flock of birds, seemingly behaving as one 'unit' despite comprising thousands of individual birds," he explained. "While this is a classical example, quantum physics adds an extra dimension, making quantum emergence even richer. For instance, understanding the electronic and vibrational properties of a single water molecule does not trivially imply the properties of liquid water or the emergent sixfold symmetry of snowflakes."

Physicists have studied the "strange" metallic state in a variety of materials for several decades. Because of strong interactions among electrons in these materials, electric current travels through them differently than it travels through regular metals like aluminum or copper. Solving the mystery of why the phenomenon arises is one of the foremost challenges in condensed matter physics, due in part to the fact that high-temperature superconductivity can also emerge out of the strange metallic state.

"One way of thinking about this is to envision a crowded stadium of soccer fans standing up in unison to create a traveling 'wave,'" he said. "If you were to observe any single person in the stadium, you would just see an individual standing and sitting back down. You would not see the wave, because it is an example of a collective behavior; you can only observe it by looking at the entire system."

When an electric current or thermal heat moves through an ordinary metal, the flowing electrons inside the metal can be modeled as moving independently and interacting only very weakly with one another. This is not the case with strange metals. When a current travels through a strange metal, the electrons lose their individuality and behave as a collective entity.

For the CAREER Award research, Nevidomskyy will focus on a fascinating class of strange metals called "heavy fermion" materials, in which the interactions between the constituent particles are so strong that they acquire a very heavy mass, sometimes several hundred times greater than that of a bare electron. As a result of this "heaviness," many properties of the material, including the electrical and thermal conductivity, are profoundly affected.

"Unfortunately, the very feature that makes these materials so interesting -- the strong interactions between electrons -- also makes them challenging to study," he said.

Nevidomskyy hopes to build a new theory to explain the electronic properties of the heavy fermions by combining existing methods of quantum chemistry with the state-of-the-art computational techniques. In particular, he aims to capture the interplay between magnetism and various interesting quantum mechanical properties, including superconductivity.

"People have tried to do this before, but a complete theory is very difficult to attain," Nevidomskyy said. "Experimentalists have compiled a great deal of empirical evidence about how heavy fermions work. We have an understanding of some of the specific phenomena associated with these materials, but we still lack a coherent theoretical understanding of why the phenomena come about and how they relate to the 'heaviness' that emerges in these materials."

For the educational component of the Cottrell grant, Nevidomskyy plans to incorporate active learning techniques in his upper-level quantum mechanics course, such as "flipped" classroom, cooperative learning and "just-in-time teaching." He said the idea is to help students better assimilate and retain information by posing thought-provoking questions that actively involve students in the learning process.

"A lot of research has been done for the lower-level undergraduate courses, the huge introductory courses like physics 101, where educators have thought at length about pedagogical techniques and how you administer quizzes," Nevidomskyy said. "But what about the third and fourth years? Courses for juniors and seniors are often much more technical, and less has been done to incorporate active learning in this context."

For the NSF CAREER award, he said he is planning to work with Rice physicist Pat Reiff and partners at the Houston Museum of Natural Sciences to develop a planetarium show tentatively titled "The Invisible Forces of Nature."

"The idea is to cover gravitational forces as well as electromagnetism, radio waves and nuclear forces -- things that we can't see but that make the universe exist and be what it is," Nevidomskyy said. "It's a huge undertaking. I am not the one leading it, but I would be assisting with the content development, specifically in my area of expertise, which is electromagnetism."

####

About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,920 undergraduates and 2,567 graduate students, Rice's undergraduate student-to-faculty ratio is just over 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is highly ranked for best quality of life by the Princeton Review and for best value among private universities by Kiplinger's Personal Finance.

Follow Rice News and Media Relations via Twitter @RiceUNews

For more information, please click here

Contacts:
David Ruth
713-348-6327


Jade Boyd
713-348-6778

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

More information about NSF CAREER Awards is available at:

More information about Cottrell Scholar Awards is available at:

Related News Press

News and information

Research reveals how our bodies keep unwelcome visitors out of cell nuclei November 24th, 2014

ASU, IBM move ultrafast, low-cost DNA sequencing technology a step closer to reality November 24th, 2014

An Inside Job: UC-Designed Nanoparticles Infiltrate, Kill Cancer Cells From Within November 24th, 2014

Cooling with the coldest matter in the world November 24th, 2014

Iran Exports Nanodrugs to Syria November 24th, 2014

Physics

Cooling with the coldest matter in the world November 24th, 2014

Researchers discern the shapes of high-order Brownian motions November 17th, 2014

Heat Transfer Sets the Noise Floor for Ultrasensitive Electronics November 11th, 2014

Discoveries

Research reveals how our bodies keep unwelcome visitors out of cell nuclei November 24th, 2014

ASU, IBM move ultrafast, low-cost DNA sequencing technology a step closer to reality November 24th, 2014

An Inside Job: UC-Designed Nanoparticles Infiltrate, Kill Cancer Cells From Within November 24th, 2014

Cooling with the coldest matter in the world November 24th, 2014

Materials/Metamaterials

Novel Method Found for Connection of Metallic Alloys to Polymers November 23rd, 2014

Sustainable Nanotechnologies Project November 20th, 2014

Total Nanofiber Solutions Company FibeRioŽ Launches The Fiber EngineŽ FX Series Systems with 10X Increase in Output November 18th, 2014

Nanocomposites Strengthen Bone Implants November 13th, 2014

Announcements

Research reveals how our bodies keep unwelcome visitors out of cell nuclei November 24th, 2014

ASU, IBM move ultrafast, low-cost DNA sequencing technology a step closer to reality November 24th, 2014

An Inside Job: UC-Designed Nanoparticles Infiltrate, Kill Cancer Cells From Within November 24th, 2014

Cooling with the coldest matter in the world November 24th, 2014

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

SUNY Poly Student Awarded Fellowship with the U.S. Department of Energy's Postgraduate Research Program: Ph.D. Candidate Accepts Postmaster's Appointment To Conduct Research At Albany NanoTech Complex November 13th, 2014

MEMS Industry Group's 10th Annual Executive Conference Showcases Rapid Innovation in MEMS/Sensors: Emphasizes Spirit of Collaboration, Supporting First Open-Source Algorithm Community, New Standardization Efforts November 10th, 2014

Microrockets fueled by water neutralize chemical and biological warfare agents October 29th, 2014

New nanodevice to improve cancer treatment monitoring October 27th, 2014

Quantum nanoscience

Cooling with the coldest matter in the world November 24th, 2014

Quantum mechanical calculations reveal the hidden states of enzyme active sites November 20th, 2014

Pseudospin-driven spin relaxation mechanism in graphene November 11th, 2014

Heat Transfer Sets the Noise Floor for Ultrasensitive Electronics November 11th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More












ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE