Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Promising Ferroelectric Materials Suffer From Unexpected Electric Polarizations: Brookhaven Lab scientists find surprising locked charge polarizations that impede performance in next-gen materials that could otherwise revolutionize data-driven devices

Electrostatic potential landscapes reconstructed from electron holography data with 15 volts of positive or negative current applied to the substrate (Nb-STO). The much steeper potential drop from the +15 V signifies a higher electric field, whereas the -15 V yielded a much flatter curve—indicating the charge asymmetry within the material.
Electrostatic potential landscapes reconstructed from electron holography data with 15 volts of positive or negative current applied to the substrate (Nb-STO). The much steeper potential drop from the +15 V signifies a higher electric field, whereas the -15 V yielded a much flatter curve—indicating the charge asymmetry within the material.

Abstract:
Electronic devices with unprecedented efficiency and data storage may someday run on ferroelectrics—remarkable materials that use built-in electric polarizations to read and write digital information, outperforming the magnets inside most popular data-driven technology. But ferroelectrics must first overcome a few key stumbling blocks, including a curious habit of "forgetting" stored data.

Promising Ferroelectric Materials Suffer From Unexpected Electric Polarizations: Brookhaven Lab scientists find surprising locked charge polarizations that impede performance in next-gen materials that could otherwise revolutionize data-driven devices

Upton, NY | Posted on August 18th, 2014

Now, scientists at the U.S. Department of Energy's Brookhaven National Laboratory have discovered nanoscale asymmetries and charge preferences hidden within ferroelectrics that may explain their operational limits.

"The positive or negative polarizations in these ferroelectric materials should be incredibly easy to switch, but the reality is much stranger," said Brookhaven Lab physicist Myung-Geun Han, lead author on the new study. "To our surprise, opposing electronic configurations only allowed for polarization in one direction—a non-starter for reading and writing data."

The researchers used a suite of state-of-the-art techniques—including real-time electrical biasing, electron holography, and electron-beam-induced current measurements—to reveal never-before-seen electric field distributions in ferroelectric thin films, which were custom-grown at Yale University. The results, published in Nature Communications, open new pathways for ferroelectric technology.

Physics of Flipping

Most electronic devices rely on ferromagnetism to read and write data. Each so-called ferromagnetic domain contains a north or south magnetic polarity, which translates into the flipping 1 or 0 of the binary code underlying all digital information. But ferromagnetic operations not only require large electric current, but the magnets can flip each other like dominoes when packed together too tightly—effectively erasing any data.

Ferroelectrics, however, use positive or negative electric charge to render digital code. Crucially, they can be packed together with domains spanning just a few atoms and require only a tiny voltage kick to flip the charge, storing much more information with much greater efficiency.

"But ferroelectric commercialization is held up by material fatigue, sudden polarization reversal, and intrinsic charge preferences," said Brookhaven Lab physicist and study coauthor Yimei Zhu. "We suspected that the origin of these issues was in the atomic interactions along the material's interface—where the ferroelectric thin film sits on a substrate."

Interface Exploration

The scientists examined ferroelectric films of lead, zirconium, and titanium oxide grown on conductive substrates of strontium, and titanium oxide with a small amount of niobium—chosen because it exhibits large polarization values with well-defined directions, either up or down. The challenge was mapping the internal electric fields in materials thousands of times thinner than a human hair under actual operating conditions.

Brookhaven scientists hunted down the suspected interface quirks using electron holography. In this technique, a transmission electron microscope (TEM) fired 200,000-volt electron wave packets through the sample with billionth-of-a-meter precision. Negative and positive electric fields inside the ferroelectric film then attracted or repelled the electron wave and slightly changed its direction. Tracking the way the beam bent throughout the ferroelectric film revealed its hidden charges.

"Rather than an evenly distributed electric field, the bending electron waves revealed non-uniform and unidirectional electric fields that induced unstable, head-to-head domain configurations," Han said. "For the first time, we could see these unusual and jagged polarizations mapped out in real space and real time."

These opposing polarizations—like rival football teams squaring off aggressively at the line of scrimmage—surprised scientists and challenged assumptions about the ferroelectric phenomenon.

"These results were totally unexpected based on the present understanding of ferroelectrics," Han said.

The asymmetries were further confirmed by measurements of electron-beam-induced current. When a focused electron beam struck the ferroelectric sample, electric fields within the film-substrate interface revealed themselves by generating additional current. Other techniques, including piezoresponse force microscopy—in which a sub-nanometer tip induces a reaction by pressing against the ferroelectric—also confirmed the strange domains.

"Each technique demonstrated this intrinsic polarization preference, likely the origin of the back-switching and poor coding performance in these ferroelectrics," Han said. "But these domain structures should require a lot of energy and thus be very unstable. The interface effect alone cannot explain their existence."
Missing Oxygen

The scientists used another ultra-precise technique to probe the material's interface: electron energy loss spectroscopy (EELS). By measuring the energy deposited by an electron beam in specific locations—a kind of electronic fingerprint—the scientists determined the material's chemical composition.

"We suspect that more oxygen could be missing near the surface of the thin films, creating electron pockets that may neutralize positive charges at the domain walls," Han said. "This oxygen deficiency naturally forms in the material, and it could explain the stabilization of head-to-head domains."

This electron-swapping oxygen deficiency—and its negative effects on reliably storing data—might be corrected by additional engineering, Han said. For example, incorporating a "sacrificial layer" between the ferroelectric and the substrate could help block the interface interactions. In fact, the study may inspire new ferroelectrics that either exploit or overcome this unexpected charge phenomenon.

Other authors include Lijun Wu and Marvin A. Schofield of Brookhaven Lab; Matthew S. J. Marshall, Jason Hoffman, Frederick J. Walker, and Charles H. Ahn of the Yale University Department of Applied Physics and Center for Research on Interfaces Structures and Phenomena; Toshihiro Aoki of JEOL USA Inc.; and Ray Twesten of Gatan Inc.

The samples used for transmission electron microscopy (TEM) were prepared by Kim Kisslinger at Brookhaven Lab's Center for Functional Nanomaterials, a U.S. Department of Energy user facility.

The research was supported by the U.S. Department of Energy's Office of Science.

Brookhaven National Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

####

About Brookhaven National Laboratory
One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation for the State University of New York on behalf of Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit applied science and technology organization.

For more information, please click here

Contacts:
Justin Eure

631-344-2347

Copyright © Brookhaven National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Physics

Freezing single atoms to absolute zero with microwaves brings quantum technology closer: Atoms frozen to absolute zero using microwaves July 2nd, 2015

Nanospiked bacteria are the brightest hard X-ray emitters July 2nd, 2015

News and information

Discovery of nanotubes offers new clues about cell-to-cell communication July 2nd, 2015

Nanospiked bacteria are the brightest hard X-ray emitters July 2nd, 2015

Engineering the world’s smallest nanocrystal July 2nd, 2015

Laboratories

Influential Interfaces Lead to Advances in Organic Spintronics July 1st, 2015

NIST ‘How-To’ Website Documents Procedures for Nano-EHS Research and Testing July 1st, 2015

Ultra-stable JILA microscopy technique tracks tiny objects for hours July 1st, 2015

X-rays and electrons join forces to map catalytic reactions in real-time: New technique combines electron microscopy and synchrotron X-rays to track chemical reactions under real operating conditions June 29th, 2015

Govt.-Legislation/Regulation/Funding/Policy

New technology using silver may hold key to electronics advances July 2nd, 2015

NIST Group Maps Distribution of Carbon Nanotubes in Composite Materials July 2nd, 2015

NIST ‘How-To’ Website Documents Procedures for Nano-EHS Research and Testing July 1st, 2015

Ultra-stable JILA microscopy technique tracks tiny objects for hours July 1st, 2015

Chip Technology

The quantum middle man July 2nd, 2015

New technology using silver may hold key to electronics advances July 2nd, 2015

Influential Interfaces Lead to Advances in Organic Spintronics July 1st, 2015

Emergence of a 'devil's staircase' in a spin-valve system July 1st, 2015

Memory Technology

The quantum middle man July 2nd, 2015

Emergence of a 'devil's staircase' in a spin-valve system July 1st, 2015

Graphene flexes its electronic muscles: Rice-led researchers calculate electrical properties of carbon cones, other shapes June 30th, 2015

Buckle up for fast ionic conduction June 16th, 2015

Discoveries

The quantum middle man July 2nd, 2015

Freezing single atoms to absolute zero with microwaves brings quantum technology closer: Atoms frozen to absolute zero using microwaves July 2nd, 2015

Producing spin-entangled electrons July 2nd, 2015

NIST Group Maps Distribution of Carbon Nanotubes in Composite Materials July 2nd, 2015

Materials/Metamaterials

New technology using silver may hold key to electronics advances July 2nd, 2015

NIST Group Maps Distribution of Carbon Nanotubes in Composite Materials July 2nd, 2015

Proposed TSCA Nanomaterial Rule ‘Premature’, Says Former EPA Toxicologist July 1st, 2015

NEI Announces the Issuance of Multiple Patents on Self-Healing & Superhydrophobic Coatings June 30th, 2015

Announcements

Nanospiked bacteria are the brightest hard X-ray emitters July 2nd, 2015

Engineering the world’s smallest nanocrystal July 2nd, 2015

Producing spin-entangled electrons July 2nd, 2015

NIST Group Maps Distribution of Carbon Nanotubes in Composite Materials July 2nd, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Nanospiked bacteria are the brightest hard X-ray emitters July 2nd, 2015

Engineering the world’s smallest nanocrystal July 2nd, 2015

Producing spin-entangled electrons July 2nd, 2015

NIST Group Maps Distribution of Carbon Nanotubes in Composite Materials July 2nd, 2015

Research partnerships

Producing spin-entangled electrons July 2nd, 2015

Harris & Harris Group Portfolio Company, AgBiome, Announces Partnership to Accelerate the Discovery of Next Generation Insect-Resistant Crops July 1st, 2015

Leti Announces Launch of First European Nanomedicine Characterisation Laboratory: Project Combines Expertise of 9 Partners in 8 Countries to Foster Nanomedicine Innovation and Facilitate Regulatory Approval July 1st, 2015

Carnegie Mellon chemists characterize 3-D macroporous hydrogels: Methods will allow researchers to develop new 'smart' materials June 30th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project