Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Molecular engineers record an electron's quantum behavior

These images show a diamond sample with a hemispherical lens (right and lower left), and the location of a single electron spin/quantum state visible through its light emission (upper left). The scale bar on the image at upper left measures five microns, the approximate diameter of a red blood cell.

Credit: Courtesy of Awschalom Lab/University of Chicago
These images show a diamond sample with a hemispherical lens (right and lower left), and the location of a single electron spin/quantum state visible through its light emission (upper left). The scale bar on the image at upper left measures five microns, the approximate diameter of a red blood cell.

Credit: Courtesy of Awschalom Lab/University of Chicago

Abstract:
A team of researchers led by the University of Chicago has developed a technique to record the quantum mechanical behavior of an individual electron contained within a nanoscale defect in diamond. Their technique uses ultrafast pulses of laser light both to control the defect's entire quantum state and observe how that single electron state changes over time. The work appears in this week's online Science Express and will be published in print later this month in Science.

Molecular engineers record an electron's quantum behavior

Chicago, IL | Posted on August 14th, 2014

This research contributes to the emerging science of quantum information processing, which demands that science leave behind the unambiguous universe of traditional binary logic—0 or 1—and embrace the counterintuitive quantum world, where behavior is radically different from what humans experience every day. While people are generally content being in one place at a time, electrons can be in many states at once.

The team researches a quantum mechanical property of the electron known as spin. Much like conventional computers use the charge state of electrons to constitute bits of information, a quantum computer would use the spin state of a single electron as its quantum bit, or qubit. The work could accelerate development of quantum computing devices, and the extra computing power that would come with them, because it will be easier to identify materials that have appropriate quantum properties.

The spin system studied is known as the nitrogen-vacancy (NV) center, an atom-sized defect that occurs naturally in diamond, consisting of a nitrogen atom next to a vacant spot in the crystal lattice. "These defects have garnered great interest over the past decade, providing a test-bed system for developing semiconductor quantum bits as well as nanoscale sensors," said team leader David Awschalom, the Liew Family Professor of Molecular Engineering at UChicago. "Here, we were able to harness light to completely control the quantum state of this defect at extremely high speeds."

Quantum snapshots

In this new technique, the researchers locate a single NV center and then illuminate it with a pair of extremely short pulses of laser light. Each pulse lasts less than a picosecond (or a millionth of a millionth of a second). The first pulse excites the quantum states of the defect-bound electron, which then change or evolve in characteristic ways. The second pulse stops that evolution, capturing a picture of the quantum state at that elapsed time.

By progressively extending the elapsed time between the two pulses, the team creates a sequence of quantum-state snapshots—a movie of how the quantum state changes in time. The elapsed time can be as short as femtoseconds (a billionth of a millionth of a second) or as long as nanoseconds (a thousandth of a millionth of a second). On the human scale, this range of time is like the difference between an hour and a century.

Having this vast range of timescales makes the technique especially valuable. The electron is susceptible and interacts with its complex local environment in many different ways, each with a characteristic timescale. Being able to test a wide range of these timescales gives a far more complete picture of the dynamics of the NV center than has been obtained previously.

"Our goal was to push the limits of quantum control in these remarkable defect systems," explained Lee Bassett, co-lead author on the paper and now an assistant professor of electrical and systems engineering at the University of Pennsylvania, "but the technique also provides an exciting new measurement tool. By using pulses of light to direct the defect's quantum dynamics on super-short timescales, we can extract a wealth of information about the defect and its environment."

"It's quite a versatile technique, providing a full picture of the excited state of the quantum defect," said F. Joseph Heremans, a postdoctoral scholar at UChicago, the other co-lead author on the paper. "Previous work on the nitrogen-vacancy center has hinted at some of these processes, but here, simply through the application of these ultrafast pulses, we get a much richer understanding of this quantum beast."

Spin control

It's not just a matter of observation, though. "This technique also provides a means of control of the spin state—an important precursor for any quantum information system," said Evelyn Hu, a professor of applied physics and electrical engineering at Harvard University, who is not connected with the new work.

In addition, the method is not limited to investigating this particular defect. It could be applied to quantum states of matter in a host of materials and technologies, including many semiconductor materials. "You only have to be able to use light to transfer an electron between a ground state and an excited state," said Awschalom.

Professor Guido Burkard, theoretical physicist at the University of Konstanz and a co-author on the paper, remarked, "This technique offers a path toward understanding and controlling new materials at the atomic level."

Hu agrees that the technique opens many new avenues. "Each new system will pose new challenges to understanding the energy levels, local environments, and other properties, but the general approach should provide an enormous step forward for the field," said Hu.

###

In addition to researchers from UChicago's Institute for Molecular Engineering, the team included collaborators at the University of California, Santa Barbara (co-lead author Lee Bassett is now at the University of Pennsylvania), and the University of Konstanz, Germany.

####

For more information, please click here

Contacts:
Steve Koppes
773-702-8366

Copyright © University of Chicago

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Dais Analytic Corporation Appoints Eliza Wang to Board of Directors: Company's Newest Director Brings Expertise in Commercial and Legal Matters Both in the United States and China; Joins on the Heels of Successful Business Development Trade Mission to China April 18th, 2015

Beyond the lithium ion -- a significant step toward a better performing battery April 18th, 2015

Protein Building Blocks for Nanosystems: Scientists develop method for producing bio-based materials with new properties April 17th, 2015

Oxford Instruments commissions high field outsert magnet system for the National High Magnetic Field Laboratory 32 Tesla magnet program April 17th, 2015

Spintronics

On the road to spin-orbitronics: Berkeley Lab researchers find new way to manipulate magnetic domain walls April 13th, 2015

Graphene looking promising for future spintronic devices April 10th, 2015

Magnetic vortices in nanodisks reveal information: Researchers from Dresden and Jülich use microwaves to read out information from smallest storage devices March 4th, 2015

Insight into inner magnetic layers: Measurements at BESSY II have shown how spin filters forming within magnetic sandwiches influence tunnel magnetoresistance -- results that can help in designing spintronic component- February 17th, 2015

Quantum Computing

NIST tightens the bounds on the quantum information 'speed limit' April 13th, 2015

Electrical control of quantum bits in silicon paves the way to large quantum computers: Breakthrough by Australian-led team should make the construction of large-scale quantum computers more affordable April 11th, 2015

OU physicists first to create new molecule with record-setting dipole moment April 4th, 2015

Quantum teleportation on a chip: A significant step towards ultra-high speed quantum computers April 1st, 2015

Discoveries

Protein Building Blocks for Nanosystems: Scientists develop method for producing bio-based materials with new properties April 17th, 2015

Major advance in artificial photosynthesis poses win/win for the environment: Berkeley Lab researchers perform solar-powered green chemistry with captured CO2 April 16th, 2015

Newly-Developed Nanocatalysts Increase Performance of Fuel Cells April 16th, 2015

Lanthanide-Organic Framework Nanothermometers Prepared by Spray-Drying April 16th, 2015

Materials/Metamaterials

The National Science Foundation names engineering researcher Andrea Alú its Alan T. Waterman awardee for 2015: Alú is a pioneer in the field of metamaterials who has developed "cloaking" technology to make objects invisible to sensors April 16th, 2015

Cobalt film a clean-fuel find: Rice University discovery is efficient, robust at drawing hydrogen and oxygen from water April 15th, 2015

Combined effort for structural determination April 15th, 2015

Harvesting energy from electromagnetic waves: In the future, clean alternatives such as harvesting energy from electromagnetic waves may help ease the world's energy shortage April 15th, 2015

Announcements

Dais Analytic Corporation Appoints Eliza Wang to Board of Directors: Company's Newest Director Brings Expertise in Commercial and Legal Matters Both in the United States and China; Joins on the Heels of Successful Business Development Trade Mission to China April 18th, 2015

Beyond the lithium ion -- a significant step toward a better performing battery April 18th, 2015

Protein Building Blocks for Nanosystems: Scientists develop method for producing bio-based materials with new properties April 17th, 2015

Oxford Instruments commissions high field outsert magnet system for the National High Magnetic Field Laboratory 32 Tesla magnet program April 17th, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

The National Science Foundation names engineering researcher Andrea Alú its Alan T. Waterman awardee for 2015: Alú is a pioneer in the field of metamaterials who has developed "cloaking" technology to make objects invisible to sensors April 16th, 2015

Major advance in artificial photosynthesis poses win/win for the environment: Berkeley Lab researchers perform solar-powered green chemistry with captured CO2 April 16th, 2015

Newly-Developed Nanocatalysts Increase Performance of Fuel Cells April 16th, 2015

Nanotubes with two walls have singular qualities: Rice University lab calculates unique electronic qualities of double-walled carbon nanotubes April 16th, 2015

Photonics/Optics/Lasers

Protein Building Blocks for Nanosystems: Scientists develop method for producing bio-based materials with new properties April 17th, 2015

Light in a spin: Researchers demonstrate angular accelerating light April 15th, 2015

Graphene pushes the speed limit of light-to-electricity conversion: Researchers from ICFO, MIT and UC Riverside have been able to develop a graphene-based photodetector capable of converting absorbed light into an electrical voltage at ultrafast timescales April 14th, 2015

Scientists create invisible objects without metamaterial cloaking April 14th, 2015

Research partnerships

Beyond the lithium ion -- a significant step toward a better performing battery April 18th, 2015

Light in a spin: Researchers demonstrate angular accelerating light April 15th, 2015

Graphene pushes the speed limit of light-to-electricity conversion: Researchers from ICFO, MIT and UC Riverside have been able to develop a graphene-based photodetector capable of converting absorbed light into an electrical voltage at ultrafast timescales April 14th, 2015

Scientists create invisible objects without metamaterial cloaking April 14th, 2015

Quantum nanoscience

Quantization of 'surface Dirac states' could lead to exotic applications April 15th, 2015

Electrical control of quantum bits in silicon paves the way to large quantum computers: Breakthrough by Australian-led team should make the construction of large-scale quantum computers more affordable April 11th, 2015

Quantum physics -- hot and cold at the same time: Measurements at the Vienna University of Technology show that a cloud of quantum particles can have several temperatures at once; the experiment provides new insight into the behavior of large quantum systems April 9th, 2015

A glass fiber that brings light to a standstill: By coupling photons to atoms, light in a glass fiber can be slowed down to the speed of an express train; for a short while it can even be brought to a complete stop April 9th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE