Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Could hemp nanosheets topple graphene for making the ideal supercapacitor?

Abstract:
Title

Interconnected carbon nanosheets derived from hemp for ultrafast supercapacitors with high energy

Abstract

We created unique interconnected partially graphitic carbon nanosheets (10-30 nm in thickness) with high specific surface area (up to 2287 m2 g-1), significant volume fraction of mesoporosity (up to 58%), and good electrical conductivity (211-226 S/m) from hemp bast fiber. The nanosheets are ideally suited for low (down to 0°C) through high (100°C) temperature ionic liquid-based supercapacitor applications: At 0°C and a current density of 10 A g-1, the electrode maintains a remarkable capacitance of 106 F g-1. At 20,60, and 100 oC and an extreme current density of 100 A g-1, there is excellent capacitance retention (72-92%) with the specific capacitances being 113, 144 and 142 F g-1, respectively. These characteristics favorably place the materials on a Ragone Chart providing among the best power - energy characteristics (on an active mass normalized basis) ever reported for an electrochemical capacitor: At a very high power density of 20 kW kg-1 and 20, 60 and 100 °C, the energy densities are 19, 34 and 40 Wh kg-1, respectively. Moreover the assembled supercapacitor device yields a maximum energy density of 12 Wh kg-1, which is higher than commercially available supercapacitors. By taking advantage of the complex multi-layered structure of a hemp bast fiber precursor, such exquisite carbons were able to be achieved by simple hydrothermal carbonization combined with activation. This novel precursor-synthesis route presents a great potential for facile large-scale production of high-performance carbons for a variety of diverse applications including energy storage.

Could hemp nanosheets topple graphene for making the ideal supercapacitor?

San Francisco, CA | Posted on August 12th, 2014

As hemp makes a comeback in the U.S. after a decades-long ban on its cultivation, scientists are reporting that fibers from the plant can pack as much energy and power as graphene, long-touted as the model material for supercapacitors. They're presenting their research, which a Canadian start-up company is working on scaling up, at the 248th National Meeting & Exposition of the American Chemical Society (ACS), the world's largest scientific society.

The meeting features nearly 12,000 presentations on a wide range of science topics and is being held here through Thursday.

David Mitlin, Ph.D., explains that supercapacitors are energy storage devices that have huge potential to transform the way future electronics are powered. Unlike today's rechargeable batteries, which sip up energy over several hours, supercapacitors can charge and discharge within seconds. But they normally can't store nearly as much energy as batteries, an important property known as energy density. One approach researchers are taking to boost supercapacitors' energy density is to design better electrodes. Mitlin's team has figured out how to make them from certain hemp fibers — and they can hold as much energy as the current top contender: graphene.

"Our device's electrochemical performance is on par with or better than graphene-based devices," Mitlin says. "The key advantage is that our electrodes are made from biowaste using a simple process, and therefore, are much cheaper than graphene."

The race toward the ideal supercapacitor has largely focused on graphene — a strong, light material made of atom-thick layers of carbon, which when stacked, can be made into electrodes. Scientists are investigating how they can take advantage of graphene's unique properties to build better solar cells, water filtration systems, touch-screen technology, as well as batteries and supercapacitors. The problem is it's expensive.

Mitlin's group decided to see if they could make graphene-like carbons from hemp bast fibers. The fibers come from the inner bark of the plant and often are discarded from Canada's fast-growing industries that use hemp for clothing, construction materials and other products. The U.S. could soon become another supplier of bast. It now allows limited cultivation of hemp, which unlike its close cousin, does not induce highs.

Scientists had long suspected there was more value to the hemp bast — it was just a matter of finding the right way to process the material.

"We've pretty much figured out the secret sauce of it," says Mitlin, who's now with Clarkson University in New York. "The trick is to really understand the structure of a starter material and to tune how it's processed to give you what would rightfully be called amazing properties."

His team found that if they heated the fibers for 24 hours at a little over 350 degrees Fahrenheit, and then blasted the resulting material with more intense heat, it would exfoliate into carbon nanosheets.

Mitlin's team built their supercapacitors using the hemp-derived carbons as electrodes and an ionic liquid as the electrolyte. Fully assembled, the devices performed far better than commercial supercapacitors in both energy density and the range of temperatures over which they can work. The hemp-based devices yielded energy densities as high as 12 Watt-hours per kilogram, two to three times higher than commercial counterparts. They also operate over an impressive temperature range, from freezing to more than 200 degrees Fahrenheit.

"We're past the proof-of-principle stage for the fully functional supercapacitor," he says. "Now we're gearing up for small-scale manufacturing."

###

Mitlin, who conducted the research while at the University of Alberta, acknowledges funding from Alberta Innovates Technology Futures, National Institute for Nanotechnology (Canada) and Alberta Livestock and Meat Agency.

A press conference on this topic will be held Tuesday, August 12, at 10:30 a.m. Pacific time in the Moscone Center, North Building. Reporters may report to Room 113 in person, or access live video of the event and ask questions at the ACS Ustream channel www.ustream.tv/channel/acslive.

####

About American Chemical Society
The American Chemical Society is a nonprofit organization chartered by the U.S. Congress. With more than 161,000 members, ACS is the world's largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.

For more information, please click here

Contacts:
Michael Bernstein
415-978-3506 (S.F. Press Center, Aug. 9-13)
202-872-6042


Katie Cottingham, Ph.D.
415-978-3506 (S.F. Press Center, Aug. 9-13)
301-775-8455

Copyright © American Chemical Society

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Remote-control shoots laser at nano-gold to turn on cancer-killing immune cells April 20th, 2018

New qubit now works without breaks: A universal design for superconducting qubits has been created April 19th, 2018

Observing biological nanotransporters: Chemistry April 19th, 2018

Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018

Individual impurity atoms detectable in graphene April 18th, 2018

Chemistry

Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018

Phononic SEIRA -- enhancing light-molecule interactions via crystal lattice vibrations April 10th, 2018

Graphene/ Graphite

Individual impurity atoms detectable in graphene April 18th, 2018

High-speed and on-silicon-chip graphene blackbody emitters: Integrated light emitters for optical communications April 5th, 2018

Discoveries

Remote-control shoots laser at nano-gold to turn on cancer-killing immune cells April 20th, 2018

New qubit now works without breaks: A universal design for superconducting qubits has been created April 19th, 2018

Observing biological nanotransporters: Chemistry April 19th, 2018

Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018

Materials/Metamaterials

Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018

Individual impurity atoms detectable in graphene April 18th, 2018

Psst! A whispering gallery for light boosts solar cells April 14th, 2018

Artificial intelligence accelerates discovery of metallic glass: Machine learning algorithms pinpoint new materials 200 times faster than previously possible April 13th, 2018

Announcements

Remote-control shoots laser at nano-gold to turn on cancer-killing immune cells April 20th, 2018

New qubit now works without breaks: A universal design for superconducting qubits has been created April 19th, 2018

Observing biological nanotransporters: Chemistry April 19th, 2018

Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Remote-control shoots laser at nano-gold to turn on cancer-killing immune cells April 20th, 2018

New qubit now works without breaks: A universal design for superconducting qubits has been created April 19th, 2018

Observing biological nanotransporters: Chemistry April 19th, 2018

Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Ultra-powerful batteries made safer, more efficient: Team aims to curb formation of harmful crystal-like masses in lithium metal batteries April 12th, 2018

CAP-XX Develops Industry’s First 3 Volt Thin Prismatic Supercapacitors: Provides peak power support to 3V coin cell batteries and eliminates need for 2.7V LDO regulator for less expensive, smaller, more energy-efficient designs with extended battery life April 11th, 2018

A new way to find better battery materials: Design principles could point to better electrolytes for next-generation lithium batteries March 29th, 2018

Graphene oxide nanosheets could help bring lithium-metal batteries to market March 23rd, 2018

Events/Classes

Grand Opening of UC Irvine Materials Research Institute (IMRI) to Spotlight JEOL Center for Nanoscale Solutions: Renowned Materials Scientists to Present at the 1st International Symposium on Advanced Microscopy and Spectroscopy (ISAMS) April 18th, 2018

Nanobiotix Shows NBTXR3 Nanoparticles Can Stoke Anti-Tumor Immune Response April 17th, 2018

HTA to Present European Strategy for Competitive Micro- and Nanotechnologies & Smart Systems: Special Event in Brussels on April 24 Gathers Research Institutes’ CEOs, European Commissioners and Key European Industrials April 17th, 2018

Lifeboat Foundation funds flying 3D-printed classroom cubesats with Perlan II April 16th, 2018

Alliances/Trade associations/Partnerships/Distributorships

New era in high field superconducting magnets – opening new frontiers in science, nanotechnology and materials discovery January 9th, 2018

Leti Field Trials Demonstrate New Multicarrier Waveform for Rural, Maritime Broadband Radio: Field Trial in Orkney Islands Used New Filtered Multicarrier Waveform at 700MHz Band with Flexible Bandwidth Usage (Fragmented and Continuous Spectrum) December 18th, 2017

A new product to help combat mouldy walls, thanks to technology developed at the ICN2 December 14th, 2017

JPK Instruments announce partnership with Swiss company, Cytosurge AG. The partnership makes Cytosurge’s FluidFM® technology available on the JPK NanoWizard® AFM platform December 8th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project