Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > From Narrow to Broad

Abstract:
Electromagnetic absorbers based on plasmonic and metamaterial structures are of great interest for many areas as narrowband absorbers. A variety of approaches have been proposed to achieve broadband absorption, which is needed for applications such as solar energy harvesting.

From Narrow to Broad

Hangzhou, China | Posted on July 30th, 2014

Early research on electromagnetic (EM) absorbers dates back to 1902 when Wood observed the anomalous dips in the reflection spectra of metallic gratings under illumination of a white-light source. EM wave absorbers are devices in which the incident radiation at the operating wavelengths can be efficiently absorbed, and then transformed into ohmic heat or other forms of energy. Thereby, neither transmission nor reflection is produced when a wave passes through a perfect absorber.

There are various types of configurations being used as EM absorbers, such as lamellar gratings, convex grooves, spherical voids, and hole arrays. These absorbers are made of noble metals, and associated with plasmonics that contains interesting physical phenomena associated with planar or localized due to the excitation of surface plasmon polaritons (SPPs). Metamaterials are artificial assemblies of structured elements of subwavelength size, i.e. much smaller than the wavelength of the incident waves. The effective permittivity and permeability can be designated from zero to infinity, and as a result, various unique properties that are not available in nature can be finally achieved.

In a review article, scientists from Zhejiang University in Hangzhou and the Taiyuan University of Technology in China give an overview on the principle of different types of narrowband EM absorbers as well as the various approaches to achieve broadband/multiband absorbers. Many mechanisms of EM absorption based on metallic structures as well as metamaterial-based schemes are described and the authors discuss how to improve the performance of the absorption band.

A series of plasmonic and metamaterial structures can work as efficient narrowband absorbers due to the excitation of plasmonic or photonic resonances, providing a great potential for selective thermal emitters, biosensing, etc. In other applications such as solar-energy harvesting and photonic detection, the bandwidth of light absorbers is required to be quite broad. A variety of mechanisms of broadband/multiband absorption have been proposed, such as mixing multiple resonances together, exciting phase resonances, slowing down light by anisotropic metamaterials, employing high loss materials.

The most profound application area of EM absorbers is solar-energy harvesting. Every improvement is of great significance to society, bringing both economic and environmental benefits. In the future, low-cost, easily fabricated, and high-performance solar absorbers will be in high demand for building economic solar plants. Despite the progress made in producing high-performance EM absorbers, their industrial realization still remains a challenge. (Text contributed by K. Maedefessel-Herrmann)

See the original publication: Yanxia Cui, Yingran He, Yi Jin, Fei Ding, Liu Yang, Yuqian Ye, Shoumin Zhong, Yinyue Lin, and Sailing He, Plasmonic and metamaterial structures as electromagnetic absorbers, Laser Photonics Rev., 8, 495-520 (2014); DOI 10.1002/lpor.201400026

####

About Laser and Photonics Reviews
Laser & Photonics Reviews is an international journal which covers the current range of laser physics and photonics, both theoretical and experimental, from recent research to specific developments and novel applications. The journal publishes Review Articles, Original Papers and Letters. Latest Journal Impact Factor (2013): 9.313 (ISI Journal Citation Reports 2013).

For more information, please click here

Contacts:


Regina Hagen
Editorial Office, Laser & Photonics Reviews
Managing Editor, Physical Sciences
Global Research
Wiley-VCH Verlag GmbH & Co. KGaA
Rotherstrasse 21
10245 Berlin
Germany

Copyright © Laser and Photonics Reviews

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

Everything You Need To Know About Nanopesticides January 30th, 2015

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Crystal light: New light-converting materials point to cheaper, more efficient solar power: University of Toronto engineers study first single crystal perovskites for new solar cell and LED applications January 30th, 2015

Discoveries

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

Everything You Need To Know About Nanopesticides January 30th, 2015

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Crystal light: New light-converting materials point to cheaper, more efficient solar power: University of Toronto engineers study first single crystal perovskites for new solar cell and LED applications January 30th, 2015

Materials/Metamaterials

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

Crystal light: New light-converting materials point to cheaper, more efficient solar power: University of Toronto engineers study first single crystal perovskites for new solar cell and LED applications January 30th, 2015

The Original Frameless Shower Doors Installs DFI's FuseCube™ to Offer Hydrophobic Protective Coating as a Standard Feature: First DFI FuseCube™ Installed on the East Coast to Enable Key Differentiator for the Original Frameless Shower Doors January 29th, 2015

Creating new materials with quantum effects for electronics January 29th, 2015

Announcements

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

Everything You Need To Know About Nanopesticides January 30th, 2015

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Crystal light: New light-converting materials point to cheaper, more efficient solar power: University of Toronto engineers study first single crystal perovskites for new solar cell and LED applications January 30th, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Crystal light: New light-converting materials point to cheaper, more efficient solar power: University of Toronto engineers study first single crystal perovskites for new solar cell and LED applications January 30th, 2015

Discovery Channel taps Angstron Materials for segment featuring graphene advances January 29th, 2015

Iranian Scientists Use MOFs to Eliminate Dye Pollutants January 29th, 2015

Energy

Crystal light: New light-converting materials point to cheaper, more efficient solar power: University of Toronto engineers study first single crystal perovskites for new solar cell and LED applications January 30th, 2015

Los Alamos Develops New Technique for Growing High-Efficiency Perovskite Solar Cells: Researchers’ crystal-production insights resolve manufacturing difficulty January 29th, 2015

Carbon nanoballs can greatly contribute to sustainable energy supply January 27th, 2015

Iranian Researchers Boost Solar Cells Efficiency Using Anti-Aggregates January 26th, 2015

Photonics/Optics/Lasers

Crystal light: New light-converting materials point to cheaper, more efficient solar power: University of Toronto engineers study first single crystal perovskites for new solar cell and LED applications January 30th, 2015

The laser pulse that gets shorter all by itself: Ultrashort laser pulses have become an indispensable tool for atomic and molecular research; A new technology makes creating short infrared pulses easy and cheap January 27th, 2015

New pathway to valleytronics January 27th, 2015

Scientists 'bend' elastic waves with new metamaterials that could have commercial applications: Materials could benefit imaging and military enhancements such as elastic cloaking January 23rd, 2015

Solar/Photovoltaic

Crystal light: New light-converting materials point to cheaper, more efficient solar power: University of Toronto engineers study first single crystal perovskites for new solar cell and LED applications January 30th, 2015

Los Alamos Develops New Technique for Growing High-Efficiency Perovskite Solar Cells: Researchers’ crystal-production insights resolve manufacturing difficulty January 29th, 2015

Visualizing interacting electrons in a molecule: Scientists at Aalto University and the University of Zurich have succeeded in directly imaging how electrons interact within a single molecule January 26th, 2015

Iranian Researchers Boost Solar Cells Efficiency Using Anti-Aggregates January 26th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE