Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > From Narrow to Broad

Abstract:
Electromagnetic absorbers based on plasmonic and metamaterial structures are of great interest for many areas as narrowband absorbers. A variety of approaches have been proposed to achieve broadband absorption, which is needed for applications such as solar energy harvesting.

From Narrow to Broad

Hangzhou, China | Posted on July 30th, 2014

Early research on electromagnetic (EM) absorbers dates back to 1902 when Wood observed the anomalous dips in the reflection spectra of metallic gratings under illumination of a white-light source. EM wave absorbers are devices in which the incident radiation at the operating wavelengths can be efficiently absorbed, and then transformed into ohmic heat or other forms of energy. Thereby, neither transmission nor reflection is produced when a wave passes through a perfect absorber.

There are various types of configurations being used as EM absorbers, such as lamellar gratings, convex grooves, spherical voids, and hole arrays. These absorbers are made of noble metals, and associated with plasmonics that contains interesting physical phenomena associated with planar or localized due to the excitation of surface plasmon polaritons (SPPs). Metamaterials are artificial assemblies of structured elements of subwavelength size, i.e. much smaller than the wavelength of the incident waves. The effective permittivity and permeability can be designated from zero to infinity, and as a result, various unique properties that are not available in nature can be finally achieved.

In a review article, scientists from Zhejiang University in Hangzhou and the Taiyuan University of Technology in China give an overview on the principle of different types of narrowband EM absorbers as well as the various approaches to achieve broadband/multiband absorbers. Many mechanisms of EM absorption based on metallic structures as well as metamaterial-based schemes are described and the authors discuss how to improve the performance of the absorption band.

A series of plasmonic and metamaterial structures can work as efficient narrowband absorbers due to the excitation of plasmonic or photonic resonances, providing a great potential for selective thermal emitters, biosensing, etc. In other applications such as solar-energy harvesting and photonic detection, the bandwidth of light absorbers is required to be quite broad. A variety of mechanisms of broadband/multiband absorption have been proposed, such as mixing multiple resonances together, exciting phase resonances, slowing down light by anisotropic metamaterials, employing high loss materials.

The most profound application area of EM absorbers is solar-energy harvesting. Every improvement is of great significance to society, bringing both economic and environmental benefits. In the future, low-cost, easily fabricated, and high-performance solar absorbers will be in high demand for building economic solar plants. Despite the progress made in producing high-performance EM absorbers, their industrial realization still remains a challenge. (Text contributed by K. Maedefessel-Herrmann)

See the original publication: Yanxia Cui, Yingran He, Yi Jin, Fei Ding, Liu Yang, Yuqian Ye, Shoumin Zhong, Yinyue Lin, and Sailing He, Plasmonic and metamaterial structures as electromagnetic absorbers, Laser Photonics Rev., 8, 495-520 (2014); DOI 10.1002/lpor.201400026

####

About Laser and Photonics Reviews
Laser & Photonics Reviews is an international journal which covers the current range of laser physics and photonics, both theoretical and experimental, from recent research to specific developments and novel applications. The journal publishes Review Articles, Original Papers and Letters. Latest Journal Impact Factor (2013): 9.313 (ISI Journal Citation Reports 2013).

For more information, please click here

Contacts:


Regina Hagen
Editorial Office, Laser & Photonics Reviews
Managing Editor, Physical Sciences
Global Research
Wiley-VCH Verlag GmbH & Co. KGaA
Rotherstrasse 21
10245 Berlin
Germany

Copyright © Laser and Photonics Reviews

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New technique speeds nanoMRI imaging: Multiplexing technique for nanoscale magnetic resonance imaging developed by researchers in Switzerland cuts normal scan time from two weeks to two days May 28th, 2015

Squeezed quantum cats May 28th, 2015

New chip makes testing for antibiotic-resistant bacteria faster, easier: Researchers at the University of Toronto design diagnostic chip to reduce testing time from days to one hour, allowing doctors to pick the right antibiotic the first time May 28th, 2015

Collaboration could lead to biodegradable computer chips May 28th, 2015

Discoveries

New technique speeds nanoMRI imaging: Multiplexing technique for nanoscale magnetic resonance imaging developed by researchers in Switzerland cuts normal scan time from two weeks to two days May 28th, 2015

Squeezed quantum cats May 28th, 2015

New chip makes testing for antibiotic-resistant bacteria faster, easier: Researchers at the University of Toronto design diagnostic chip to reduce testing time from days to one hour, allowing doctors to pick the right antibiotic the first time May 28th, 2015

Collaboration could lead to biodegradable computer chips May 28th, 2015

Materials/Metamaterials

Controlled Release of Anticorrosive Materials in Spot by Nanocarriers May 27th, 2015

Production of Copper Cobaltite Nanocomposites with Photocatalytic Properties in Iran May 27th, 2015

Dr.Theivasanthi Slashes the Price of Graphene Heavily: World first & lowest price – Nano-price (30 USD / kg) of graphene by nanotechnologist May 26th, 2015

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Announcements

New technique speeds nanoMRI imaging: Multiplexing technique for nanoscale magnetic resonance imaging developed by researchers in Switzerland cuts normal scan time from two weeks to two days May 28th, 2015

Squeezed quantum cats May 28th, 2015

New chip makes testing for antibiotic-resistant bacteria faster, easier: Researchers at the University of Toronto design diagnostic chip to reduce testing time from days to one hour, allowing doctors to pick the right antibiotic the first time May 28th, 2015

Collaboration could lead to biodegradable computer chips May 28th, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

New technique speeds nanoMRI imaging: Multiplexing technique for nanoscale magnetic resonance imaging developed by researchers in Switzerland cuts normal scan time from two weeks to two days May 28th, 2015

Squeezed quantum cats May 28th, 2015

New chip makes testing for antibiotic-resistant bacteria faster, easier: Researchers at the University of Toronto design diagnostic chip to reduce testing time from days to one hour, allowing doctors to pick the right antibiotic the first time May 28th, 2015

Controlled Release of Anticorrosive Materials in Spot by Nanocarriers May 27th, 2015

Energy

Technology for Tomorrow’s Market Opportunities and Challenges: LetiDays Grenoble Presents the Possibilities: June 24-25 Event Includes Focus on IoT-Augmented Mobility and Leti’s Latest Results on Silicon Technologies, Sensors, Health Applications and Smart Cities May 27th, 2015

Physicists solve quantum tunneling mystery: ANU media release: An international team of scientists studying ultrafast physics have solved a mystery of quantum mechanics, and found that quantum tunneling is an instantaneous process May 27th, 2015

Fine-tuned molecular orientation is key to more efficient solar cells May 26th, 2015

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Photonics/Optics/Lasers

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Samtec, Global Provider of Interconnect Systems, Joins IRT Nanoelec Silicon Photonics Program May 21st, 2015

Taking control of light emission: Researchers find a way of tuning light waves by pairing 2 exotic 2-D materials May 20th, 2015

Solar/Photovoltaic

Fine-tuned molecular orientation is key to more efficient solar cells May 26th, 2015

Efficiency record for black silicon solar cells jumps to 22.1 percent: Aalto University's researchers improved their previous record by over 3 absolute percents in cooperation with Universitat Politècnica de Catalunya May 18th, 2015

Wearables may get boost from boron-infused graphene: Rice U. researchers flex muscle of laser-written microsupercapacitors May 18th, 2015

Random nanowire configurations increase conductivity over heavily ordered configurations May 16th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project