Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > From Narrow to Broad

Abstract:
Electromagnetic absorbers based on plasmonic and metamaterial structures are of great interest for many areas as narrowband absorbers. A variety of approaches have been proposed to achieve broadband absorption, which is needed for applications such as solar energy harvesting.

From Narrow to Broad

Hangzhou, China | Posted on July 30th, 2014

Early research on electromagnetic (EM) absorbers dates back to 1902 when Wood observed the anomalous dips in the reflection spectra of metallic gratings under illumination of a white-light source. EM wave absorbers are devices in which the incident radiation at the operating wavelengths can be efficiently absorbed, and then transformed into ohmic heat or other forms of energy. Thereby, neither transmission nor reflection is produced when a wave passes through a perfect absorber.

There are various types of configurations being used as EM absorbers, such as lamellar gratings, convex grooves, spherical voids, and hole arrays. These absorbers are made of noble metals, and associated with plasmonics that contains interesting physical phenomena associated with planar or localized due to the excitation of surface plasmon polaritons (SPPs). Metamaterials are artificial assemblies of structured elements of subwavelength size, i.e. much smaller than the wavelength of the incident waves. The effective permittivity and permeability can be designated from zero to infinity, and as a result, various unique properties that are not available in nature can be finally achieved.

In a review article, scientists from Zhejiang University in Hangzhou and the Taiyuan University of Technology in China give an overview on the principle of different types of narrowband EM absorbers as well as the various approaches to achieve broadband/multiband absorbers. Many mechanisms of EM absorption based on metallic structures as well as metamaterial-based schemes are described and the authors discuss how to improve the performance of the absorption band.

A series of plasmonic and metamaterial structures can work as efficient narrowband absorbers due to the excitation of plasmonic or photonic resonances, providing a great potential for selective thermal emitters, biosensing, etc. In other applications such as solar-energy harvesting and photonic detection, the bandwidth of light absorbers is required to be quite broad. A variety of mechanisms of broadband/multiband absorption have been proposed, such as mixing multiple resonances together, exciting phase resonances, slowing down light by anisotropic metamaterials, employing high loss materials.

The most profound application area of EM absorbers is solar-energy harvesting. Every improvement is of great significance to society, bringing both economic and environmental benefits. In the future, low-cost, easily fabricated, and high-performance solar absorbers will be in high demand for building economic solar plants. Despite the progress made in producing high-performance EM absorbers, their industrial realization still remains a challenge. (Text contributed by K. Maedefessel-Herrmann)

See the original publication: Yanxia Cui, Yingran He, Yi Jin, Fei Ding, Liu Yang, Yuqian Ye, Shoumin Zhong, Yinyue Lin, and Sailing He, Plasmonic and metamaterial structures as electromagnetic absorbers, Laser Photonics Rev., 8, 495-520 (2014); DOI 10.1002/lpor.201400026

####

About Laser and Photonics Reviews
Laser & Photonics Reviews is an international journal which covers the current range of laser physics and photonics, both theoretical and experimental, from recent research to specific developments and novel applications. The journal publishes Review Articles, Original Papers and Letters. Latest Journal Impact Factor (2013): 9.313 (ISI Journal Citation Reports 2013).

For more information, please click here

Contacts:


Regina Hagen
Editorial Office, Laser & Photonics Reviews
Managing Editor, Physical Sciences
Global Research
Wiley-VCH Verlag GmbH & Co. KGaA
Rotherstrasse 21
10245 Berlin
Germany

Copyright © Laser and Photonics Reviews

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Switching with molecules: Molecular switch will facilitate the development of pioneering electro-optical devices May 25th, 2018

Tunable diamond string may hold key to quantum memory: A process similar to guitar tuning improves storage time of quantum memory May 24th, 2018

Remote control of transport through nanopores: New study outlines key factors affecting the transfer of molecules through biological channels May 24th, 2018

2018 Kavli Prizes in Astrophysics, Nanoscience, and Neuroscience to be Announced Live on May 31: Live announcement at the Norwegian Academy of Science and Letters to be streamed live at World Science Festival Event May 24th, 2018

Discoveries

Switching with molecules: Molecular switch will facilitate the development of pioneering electro-optical devices May 25th, 2018

Tunable diamond string may hold key to quantum memory: A process similar to guitar tuning improves storage time of quantum memory May 24th, 2018

Remote control of transport through nanopores: New study outlines key factors affecting the transfer of molecules through biological channels May 24th, 2018

'Spooky action at a distance': Researchers develop module for quantum repeater May 23rd, 2018

Materials/Metamaterials

Making carbon nanotubes as usable as common plastics: Researchers discover that cresols disperse carbon nanotubes at unprecedentedly high concentrations May 15th, 2018

Mining for gold with a computer: Texas A&M team gleans new insights on key material May 3rd, 2018

'Exceptional' research points way toward quantum discoveries: Rice University scientists make tunable light-matter couplings in nanotube films April 30th, 2018

The first PE blown films with nanotubes hit the Chinese market April 26th, 2018

Announcements

Switching with molecules: Molecular switch will facilitate the development of pioneering electro-optical devices May 25th, 2018

Tunable diamond string may hold key to quantum memory: A process similar to guitar tuning improves storage time of quantum memory May 24th, 2018

Remote control of transport through nanopores: New study outlines key factors affecting the transfer of molecules through biological channels May 24th, 2018

2018 Kavli Prizes in Astrophysics, Nanoscience, and Neuroscience to be Announced Live on May 31: Live announcement at the Norwegian Academy of Science and Letters to be streamed live at World Science Festival Event May 24th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Switching with molecules: Molecular switch will facilitate the development of pioneering electro-optical devices May 25th, 2018

Tunable diamond string may hold key to quantum memory: A process similar to guitar tuning improves storage time of quantum memory May 24th, 2018

Remote control of transport through nanopores: New study outlines key factors affecting the transfer of molecules through biological channels May 24th, 2018

'Spooky action at a distance': Researchers develop module for quantum repeater May 23rd, 2018

Energy

Remote control of transport through nanopores: New study outlines key factors affecting the transfer of molecules through biological channels May 24th, 2018

Team achieves two-electron chemical reactions using light energy, gold May 15th, 2018

Hematene joins parade of new 2D materials: Rice University-led team extracts 3-atom-thick sheets from common iron oxide May 8th, 2018

A designer's toolkit for constructing complex nanoparticles May 5th, 2018

Photonics/Optics/Lasers

Switching with molecules: Molecular switch will facilitate the development of pioneering electro-optical devices May 25th, 2018

Columbia Researchers Squeeze Light into Nanoscale Devices and Circuits: Team is first to directly image propagation and dynamics of graphene plasmons at very low temperatures; findings could impact optical communications and signal processing May 23rd, 2018

A micro-thermometer to record tiny temperature changes May 15th, 2018

Strain improves performance of atomically thin semiconductor material May 11th, 2018

Solar/Photovoltaic

Team achieves two-electron chemical reactions using light energy, gold May 15th, 2018

Hematene joins parade of new 2D materials: Rice University-led team extracts 3-atom-thick sheets from common iron oxide May 8th, 2018

Harvesting clean hydrogen fuel through artificial photosynthesis May 3rd, 2018

Research gives new ray of hope for solar fuel April 27th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project