Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Seeing is bead-lieving: Rice University scientists create model 'bead-spring' chains with tunable properties

DNA linkers serve as bridges between colloidal beads in a new experiment by Rice University scientists to study the physics of "bead-spring" polymer chains. They found the chains can be tuned for varying degrees of stiffness or flexibility. Credit: Biswal Lab/Rice University
DNA linkers serve as bridges between colloidal beads in a new experiment by Rice University scientists to study the physics of "bead-spring" polymer chains. They found the chains can be tuned for varying degrees of stiffness or flexibility.

Credit: Biswal Lab/Rice University

Abstract:
Rice University researchers are using magnetic beads and DNA "springs" to create chains of varying flexibility that can be used as microscale models for polymer macromolecules.

Seeing is bead-lieving: Rice University scientists create model 'bead-spring' chains with tunable properties

Houston, TX | Posted on July 28th, 2014

The experiment is visual proof that "bead-spring" polymers, introduced as theory in the 1950s, can be made as stiff or as flexible as required and should be of interest to materials scientists who study the basic physics of polymers.

The work led by Rice chemical and biomolecular engineer Sibani Lisa Biswal and graduate student Julie Byrom was published this month in the American Chemical Society journal Langmuir.

The researchers found the best way to study the theory was to assemble chains of micron-sized colloidal beads with nanoscale DNA springs of various lengths.

"Polymers are classically described as beads connected with springs," Biswal said. "A lot of polymer physicists have come up with scaling laws and intuitive polymer properties based on this very simple concept. But there are very few bead-spring model systems that you can actually visualize. That's why this work came about."

Microscopic solids suspended in a liquid like the fat particles in milk or pigment particles in paint are examples of a colloidal system. Biswal said there has been great interest in creating colloidal molecules, and the Rice experiment is a step in that direction.

To make complex colloidal macromolecules, the researchers started with commercially available, iron-rich polystyrene beads coated with a protein, streptavidin. The beads are charged to repel each other but can connect together with springy DNA fragments. The chains formed when the researchers exposed the beads to a magnetic field.

"We use the field to control particle positioning, let the DNA link the beads together and turn the field off," Biswal said, explaining how the chains self-assemble. "This is a nice system for polymers, because it's large enough to visualize individual beads and positioning, but it's small enough that thermal (Brownian) forces still dictate the chain's motion."

As expected, when they made chains with short (about 500 base pairs) DNA bridges, the macromolecule remained stiff. Longer linkers (up to 8,000 base pairs) appeared to coil up between the beads, allowing for movement in the chain. Surprisingly, when the researchers reapplied the magnetic field to stretch the long links, they once again became rigid.

"Our vision of what's happening is that DNA allows some wiggle room between particles and gives the chain elasticity," Biswal said. "But if the particles are pulled far enough apart, you stress the bridge quite a bit and reduce the freedom it has to move."

Being able to engineer such a wide range of flexibilities allows for more complex materials that can be actuated with magnetic fields, Biswal said.

"This research is interesting because until now, people haven't been able to make flexible chains like this," Byrom said. "We want to be able to explain what's happening across a broad range of polymers, but if you can only make rigid chains, it sort of limits what you can talk about."

Now that they can create polymer chains with predictable behavior, the researchers plan to study how the chains react to shifting magnetic fields over time, as well as how the chains behave in fluid flows.

The paper's co-authors are Rice alum Patric Han and undergraduate Michael Savory. The National Science Foundation supported the research.

####

About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,920 undergraduates and 2,567 graduate students, Rice's undergraduate student-to-faculty ratio is just over 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 2 for "best value" among private universities by Kiplinger's Personal Finance.

Follow Rice News and Media Relations via Twitter @RiceUNews

For more information, please click here

Contacts:
Mike Williams
713-348-6728

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Read the abstract at:

View the researchers' movies of colloidal chains at:

Biswal Lab:

George R. Brown School of Engineering:

Related News Press

News and information

How to power up graphene implants without frying cells: New analysis finds way to safely conduct heat from graphene to biological tissues September 30th, 2016

Nanosensors could help determine tumors’ ability to remodel tissue: Measuring enzyme levels could help doctors select appropriate treatments September 29th, 2016

Innovation in Nanotechnology is Focus of Symposium: Annual event brings international experts to Northwestern Oct. 6 September 29th, 2016

Cambrios at CEATEC - Japan 2016 September 29th, 2016

Govt.-Legislation/Regulation/Funding/Policy

How to power up graphene implants without frying cells: New analysis finds way to safely conduct heat from graphene to biological tissues September 30th, 2016

Crystalline Fault Lines Provide Pathway for Solar Cell Current: New tomographic AFM imaging technique reveals that microstructural defects, generally thought to be detrimental, actually improve conductivity in cadmium telluride solar cells September 26th, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

PHENOMEN is a FET-Open Research Project aiming to lay the foundations a new information technology September 19th, 2016

Discoveries

How to power up graphene implants without frying cells: New analysis finds way to safely conduct heat from graphene to biological tissues September 30th, 2016

Nanosensors could help determine tumors’ ability to remodel tissue: Measuring enzyme levels could help doctors select appropriate treatments September 29th, 2016

Fighting cancer with sticky nanoparticles September 27th, 2016

Gold nanoparticles conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2 mediated pathway in breast cancer September 27th, 2016

Materials/Metamaterials

How to power up graphene implants without frying cells: New analysis finds way to safely conduct heat from graphene to biological tissues September 30th, 2016

Innovation in Nanotechnology is Focus of Symposium: Annual event brings international experts to Northwestern Oct. 6 September 29th, 2016

Cambrios at CEATEC - Japan 2016 September 29th, 2016

Picosun patents ALD nanolaminate to prevent electronics from overheating September 28th, 2016

Announcements

How to power up graphene implants without frying cells: New analysis finds way to safely conduct heat from graphene to biological tissues September 30th, 2016

Nanosensors could help determine tumors’ ability to remodel tissue: Measuring enzyme levels could help doctors select appropriate treatments September 29th, 2016

Innovation in Nanotechnology is Focus of Symposium: Annual event brings international experts to Northwestern Oct. 6 September 29th, 2016

Cambrios at CEATEC - Japan 2016 September 29th, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Nanosensors could help determine tumors’ ability to remodel tissue: Measuring enzyme levels could help doctors select appropriate treatments September 29th, 2016

Fighting cancer with sticky nanoparticles September 27th, 2016

Gold nanoparticles conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2 mediated pathway in breast cancer September 27th, 2016

Crystalline Fault Lines Provide Pathway for Solar Cell Current: New tomographic AFM imaging technique reveals that microstructural defects, generally thought to be detrimental, actually improve conductivity in cadmium telluride solar cells September 26th, 2016

Nanobiotechnology

How to power up graphene implants without frying cells: New analysis finds way to safely conduct heat from graphene to biological tissues September 30th, 2016

Nanosensors could help determine tumors’ ability to remodel tissue: Measuring enzyme levels could help doctors select appropriate treatments September 29th, 2016

Fighting cancer with sticky nanoparticles September 27th, 2016

Gold nanoparticles conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2 mediated pathway in breast cancer September 27th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic