Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Physicists Use Computer Models to Reveal Quantum Effects in Biological Oxygen Transport: The team solved a long-standing question by explaining why oxygen – and not deadly carbon monoxide – preferably binds to the proteins that transport it around the body.

Abstract:
Physicists have created a unique combination of computer models, based on the theory of quantum mechanics, and applied them to a previously well characterised protein found in muscle to develop a new picture of how biomolecules transport and store oxygen (O2). In doing so, the international team have shown how the process of respiration, which is fundamental in humans and other vertebrates, exploits quantum mechanical effects working on tiny scales.

Physicists Use Computer Models to Reveal Quantum Effects in Biological Oxygen Transport: The team solved a long-standing question by explaining why oxygen – and not deadly carbon monoxide – preferably binds to the proteins that transport it around the body.

Dublin, Ireland | Posted on July 17th, 2014

The physicists' discovery, building on a number of years of intense collaboration on theory and software development, has solved a long-standing problem at the interface of chemistry and biology. At the same time, they have demonstrated a new way by which quantum mechanics can be used to answer biochemical questions, with implications for inspiring drug-related research and further interdisciplinary collaborations.

Assistant Professor in Physics in the School of Physics at Trinity College Dublin, Dr David O'Regan, said: "This work helps to illustrate the fact that quantum mechanical effects, which may sometimes be viewed as somehow very exotic or only relevant under extreme conditions, are at play in the day-to-day regimes where biology, chemistry and materials science operate."

Iron-containing proteins, such as ‘myoglobin' play a central role in biochemistry. Their ability to reversibly bind small molecules (such as O2) is vital for life. All animals must transport such molecules through the blood stream to where they are needed around their bodies, and myoglobin is particularly important in vertebrates. These proteins can also bind to other simple molecules such as carbon monoxide (CO), however. This is very dangerous in the case of the iron-containing proteins involved in respiration, since such a union is irreversible and leads to the protein being poisoned and the individual ultimately asphyxiating.

Until now, computational scientists have been unable to come to a good understanding of exactly why such protein poisoning is not more common. More specifically, computer simulations using the most widely-used theoretical approach (density-functional theory, ‘DFT') that won the Nobel Prize for Chemistry in 1998, as well as many of its more advanced extensions, consistently predict that CO should bind to myoglobin much more readily than O2 when the two molecules are both present. If this was to happen in reality, we would not even be around to wonder why.

The mismatch between previous predictions and what we observe in nature prompted the team of physicists to develop a new approach to understand the process of how myoglobin preferentially binds to O2, and not CO. They combined their expertise in simulating both large systems and advanced approximations in quantum physics to reach their goal.

Dr O'Regan and his international collaborators used a special variety of DFT that is optimised for large systems (and on which Dr O'Regan has worked for a number of years) to model a large myoglobin structure. They also used another advanced approach, targeting the all-important iron atom, to treat some of the more complex interactions between its electrons.

It turns out that some electrons in the myoglobin involved in binding CO and O2 exhibit a strong ‘entanglement' effect, which means that their motion cannot be described independently. The all-important strength of this effect is primarily controlled by a property of quantum mechanics (Hund's exchange) that has been traditionally neglected in such simulations; the team now believe that classical electric repulsion effects are far less important in determining which of CO and O2 is more energetically favourable for binding.

Dr O'Regan said: "We have succeeded in showing that quantum mechanical effects that we more often think of arising in advanced technological materials can be critical in determining the energy differences that drive biochemical processes occurring in the body. It is remarkable that myoglobin seems to be extremely well adapted to exploit the specific Hund's exchange strength of atomic iron, an intrinsically quantum mechanical property, in order to strongly promote O2 binding at the expense of CO. It is interesting, perhaps, to take a step back and even think of the implications with regards to early natural selection."

He added: "Computer-based simulation using DFT, together with its extensions developed in this work, is a laboratory for studying these effects on atomic length-scales. Approaches such as these are becoming increasingly valuable, and widely used, in helping to tackle contemporary, even urgent problems in areas such as pharmacology, materials for energy storage and conversion, and nanotechnology."

####

For more information, please click here

Contacts:
Thomas Deane
Press Officer for the Faculty of Engineering, Mathematics and Science
Trinity College Dublin

Tel: +353 1 896 4685

David O’Regan
Assistant Professor in Physics
Trinity College Dublin

Tel: +353 1 896 3138

Copyright © Trinity College Dublin

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Related News Press

Software

NanoTecNexus Launches New App for Learning About Nanotechnology—STEM Education Project Spearheaded by Interns February 26th, 2015

News and information

Maximum Precision in 3D Printing: New complete solution makes additive manufacturing standard for microfabrication February 26th, 2015

Real-time observation of bond formation by using femtosecond X-ray liquidography February 26th, 2015

Bruker-Sponsored Sixth AFM BioMed Conference Highlights Increasing Impact of AFM in Biological Applications February 26th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

Physics

Real-time observation of bond formation by using femtosecond X-ray liquidography February 26th, 2015

Announcements

Maximum Precision in 3D Printing: New complete solution makes additive manufacturing standard for microfabrication February 26th, 2015

Real-time observation of bond formation by using femtosecond X-ray liquidography February 26th, 2015

Bruker-Sponsored Sixth AFM BioMed Conference Highlights Increasing Impact of AFM in Biological Applications February 26th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Real-time observation of bond formation by using femtosecond X-ray liquidography February 26th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

Simple, Cost-Efficient Method Used to Determine Toxicants Growing in Pistachio February 26th, 2015

Learning by eye: Silicon micro-funnels increase the efficiency of solar cells February 25th, 2015

Nanobiotechnology

Bacteria network for food: Bacteria connect to each other and exchange nutrients February 23rd, 2015

Building tailor-made DNA nanotubes step by step: New, block-by-block assembly method could pave way for applications in opto-electronics, drug delivery February 23rd, 2015

Better batteries inspired by lowly snail shells: Biological molecules can latch onto nanoscale components and lock them into position to make high performing Li-ion battery electrodes, according to new research presented at the 59th annual meeting of the Biophysical Society February 12th, 2015

DNA 'cage' could improve nanopore technology February 10th, 2015

Quantum nanoscience

Quantum many-body systems on the way back to equilibrium: Advances in experimental and theoretical physics enable a deeper understanding of the dynamics and properties of quantum many-body systems February 25th, 2015

Quantum research past, present and future for discussion at AAAS February 16th, 2015

Exotic states materialize with supercomputers February 12th, 2015

Graphene displays clear prospects for flexible electronics February 2nd, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE