Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > A review article summarizes the state-of-the-art knowledge about graphene grain boundaries

Abstract:
The graphene produced by chemical vapor deposition is typically polycrystalline. Authors from the ICN2 Theoretical and Computational Nanoscience Group, led by ICREA Research professor Stephan Roche, together with authors from Sungkyunkwan University, analyse in Advanced Materials the challenges and opportunities of these structures.

A review article summarizes the state-of-the-art knowledge about graphene grain boundaries

Barcelona, Spain | Posted on July 11th, 2014

Graphene has attracted significant interest both for exploring fundamental science and for a wide range of technological applications. Chemical vapor deposition (CVD) is currently the only working approach to grow graphene at big scale, which is required for industrial applications. Unfortunately, the produced graphene is typically polycrystalline, consisting of a patchwork of grains with various orientations and sizes, joined by grain boundaries of irregular shapes.

Researchers from the Institut Català de Nanociència i Nanotecnologia (ICN2) Theoretical and Computational Nanoscience Group curated a review article in Advanced Materials to determine whether graphene grain boundaries are a blessing or a curse. ICREA Research Professor Stephan Roche, Group Leader at ICN2, together with Dr Aron Cummings, Jose Eduardo Barrios Vargas and Van Tuan Dinh, from the same Group, share the authorship of the review with researchers from Sungkyunkwan University. The review article not only provides guidelines for the improvement of graphene devices, but also opens a new research area of engineering graphene grain boundaries for highly sensitive electro-biochemical devices.

The review analyses the challenges and opportunities of charge transport in polycrystalline graphene, which means summarizing the state-of-the-art knowledge about graphene grain boundaries (GGBs). The review is divided in the following sections: Structure and Morphology of GGBs; Methods of Observing GGBs; Measurement of Electrical Transport across GGBs; Manipulation of GGBs with Functional Groups.

The work describes how TEM and STM, combined with theory and simulation, can provide information for the observation and characterization of GGBs at the atomic scale. These boundaries have interesting properties, such as the fact that they can be a good template for the synthesis of 1D materials, might be useful to design sensors for detecting gases and molecules or allow selective diffusion of limited gases and molecules. Controlling the atomic structure of GGBs by CVD is a big challenge from a scientific point of view, but would be a huge step forward in the realization of next-generation technologies based on this material.

####

For more information, please click here

Contacts:
Àlex Argemí, ICN2 Marketing and Communication Manager
Phone: 937372607
Fax: 937372607

Copyright © ICN2

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Article Reference:

Related News Press

News and information

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Leti Presents Advances in Propagation Modeling and Antenna Design for mmWave Spectrum: Paper Is One of 15 that Leti Presented at European Conference on Antennas and Propagation March 19-24 March 23rd, 2017

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Graphene/ Graphite

Intertronics introduce new nanoparticle deagglomeration technology March 15th, 2017

Space energy technology restored to make power stations more efficient: Scientists use graphene to reinvent abandoned heat energy converter technology March 7th, 2017

Graphene sheets capture cells efficiently: New method could enable pinpoint diagnostics on individual blood cells March 3rd, 2017

Applied Graphene Materials plc - Significant commercial progress in AGM’s three core sectors March 3rd, 2017

Discoveries

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Materials/Metamaterials

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Announcements

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project