Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Carbodeon enables 20 percent increase in polymer thermal filler conductivity with 0.03 wt.% nanodiamond additive at a lower cost than with traditional fillers: Improved materials and processes enable nanodiamond cost reductions of up to 70 percent for electronics and LED app

Nanodiamond enhanced polymeric heat sinks for LEDs
Nanodiamond enhanced polymeric heat sinks for LEDs

Abstract:
Carbodeon, a Finnish-based producer of functionalised nanodiamond materials, can now achieve a 20 percent increase in polymer thermal performance by using as little as 0.03 wt.% nanodiamond material at 45 percent thermal filler loading, enabling increased performance at a lower cost than with traditional fillers.

Carbodeon enables 20 percent increase in polymer thermal filler conductivity with 0.03 wt.% nanodiamond additive at a lower cost than with traditional fillers: Improved materials and processes enable nanodiamond cost reductions of up to 70 percent for electronics and LED app

Vantaa, Finland | Posted on July 9th, 2014

Last October, Carbodeon published its data on thermal fillers showing that the conductivity of polyamide 66 (PA66) based thermal compound could be increased by 25 percent by replacing 0.1 wt.% of the typically maximum effective level of boron nitride filler (45 wt.%) with the company's application fine-tuned nanodiamond material. The latest refinements in nanodiamond materials and compound manufacturing allow similar level performance improvements but with 70 percent less nanodiamond consumption and thus, greatly reduced cost.

The samples were manufactured at the VTT Technical Research Centre in Finland and their thermal performance was analyzed by ESK (3M) in Germany.

"The performance improvements achieved are derived from the extremely high thermal conductivity of diamond, our ability to optimise the nanodiamond filler affinity to applied polymers and other thermal fillers and finally, Carbodeon's improvements in nanodiamond filler agglomeration control," said Carbodeon CTO Vesa Myllymäki. "With the ability to control all these parameters, the nanotechnology key paradigm of ‘less gives more' can truly be realised."

The active surface chemistry inherent in detonation-synthesised nanodiamonds has historically presented difficulties in utilising the potential benefits of the 4-6nm particles, making them prone to agglomeration. Carbodeon optimises this surface chemistry so that the particles are driven to disperse and to become consistently integrated throughout parent materials, especially polymers. The much-promised properties of diamond can thus be imparted to other materials with very low, and hence economic, concentrations.

For more demanding requirements, conductivity increases of as much as 100 percent can be achieved using 1.5 percent nanodiamond materials at 20 percent thermal filler loadings.

"This increase in thermal conductivity is achieved without affecting the electrical insulation or other mechanical properties of the material and with no or very low tool wear, making it an ideal choice for a wide range of electronics and LED applications," said Vesa Myllymäki.

"We know we have not yet uncovered all the benefits that Carbodeon nanodiamonds can deliver and continue our focused application development on both polymer thermal compounds, and on metal finishing and industrial polymer coatings," Myllymäki added. "Recently we were granted a patent on nanodiamond-containing thermoplastic thermal composites and we see great future opportunities for these materials."

####

About Carbodeon
Carbodeon supplies super hard materials for applications where toughness is at a premium. Its patented technologies offer superior opportunities to several fields of business. Its grades of Ultra-Dispersed Diamonds -– also known as NanoDiamonds – possess the desired properties fine-tuned for a growing number of dedicated applications. These grades are sold under the name uDiamond®. Similarly, the company’s Nicanite® graphitic carbon nitride can be converted to carbon nitride thin-film coatings with unique properties.

For more information, please click here

Contacts:
Camille Closs
+44 (0)20 8286 0654
Watch PR

Copyright © Carbodeon

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

Everything You Need To Know About Nanopesticides January 30th, 2015

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Crystal light: New light-converting materials point to cheaper, more efficient solar power: University of Toronto engineers study first single crystal perovskites for new solar cell and LED applications January 30th, 2015

Park Systems Announces Innovations in Bio Cell Analysis with the Launch of Park NX-Bio, the only 3-in-1 Imaging Nanoscale Tool Available for Life Science Researchers January 29th, 2015

Display technology/LEDs/SS Lighting/OLEDs

Crystal light: New light-converting materials point to cheaper, more efficient solar power: University of Toronto engineers study first single crystal perovskites for new solar cell and LED applications January 30th, 2015

Visualizing interacting electrons in a molecule: Scientists at Aalto University and the University of Zurich have succeeded in directly imaging how electrons interact within a single molecule January 26th, 2015

Chip Technology

Creating new materials with quantum effects for electronics January 29th, 2015

Advantest to Exhibit at SEMICON Korea in Seoul, South Korea February 4-6 Showcasing Broad Portfolio of Semiconductor Products, Technologies and Solutions January 29th, 2015

Nanometrics to Present at the Stifel 2015 Technology, Internet and Media Conference January 27th, 2015

New pathway to valleytronics January 27th, 2015

Nanoelectronics

Electronic circuits with reconfigurable pathways closer to reality January 26th, 2015

Rice-sized laser, powered one electron at a time, bodes well for quantum computing January 15th, 2015

Rapid journey through a crystal lattice: Researchers measure how fast electrons move through single atomic layers January 14th, 2015

A new step towards using graphene in electronic applications January 14th, 2015

Discoveries

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

Everything You Need To Know About Nanopesticides January 30th, 2015

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Crystal light: New light-converting materials point to cheaper, more efficient solar power: University of Toronto engineers study first single crystal perovskites for new solar cell and LED applications January 30th, 2015

Announcements

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

Everything You Need To Know About Nanopesticides January 30th, 2015

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Crystal light: New light-converting materials point to cheaper, more efficient solar power: University of Toronto engineers study first single crystal perovskites for new solar cell and LED applications January 30th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE