Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > Making dreams come true: Making graphene from plastic?

How to manufacture transparent and conductive carbon nanosheet using PIM-1 polymer solution: (a) Quart substrate is being coated with PIM-1 polymer solution with ladder structure and conducts heating in high temperature to manufacture carbon nanosheet. Without any additional process OSC (organic solar cell) can be made directly on the sheet to manufacture solar cells. (b), (c), (d) show thickness, surface resistivity and transparency of the carbon nanosheet, respectively in relation to the concentration of PIM-1. Also, the new method easily controls the unwanted effects from the electronic and optical characteristics of carbon nanosheet, which is produced when the polymer solution is concentrated. As the high molecule solution concentration gets higher as shown in (Axis X, (b),(c)), the thicker it gets as shown in Figure (b) but, it becomes less resistant as shown in Figure (c), and the current flow better.
How to manufacture transparent and conductive carbon nanosheet using PIM-1 polymer solution: (a) Quart substrate is being coated with PIM-1 polymer solution with ladder structure and conducts heating in high temperature to manufacture carbon nanosheet. Without any additional process OSC (organic solar cell) can be made directly on the sheet to manufacture solar cells. (b), (c), (d) show thickness, surface resistivity and transparency of the carbon nanosheet, respectively in relation to the concentration of PIM-1. Also, the new method easily controls the unwanted effects from the electronic and optical characteristics of carbon nanosheet, which is produced when the polymer solution is concentrated. As the high molecule solution concentration gets higher as shown in (Axis X, (b),(c)), the thicker it gets as shown in Figure (b) but, it becomes less resistant as shown in Figure (c), and the current flow better.

Abstract:
Graphene is gaining heated attention, dubbed a "wonder material" with great conductivity, flexibility and durability. However, graphene is hard to come by due to the fact that its manufacturing process is complicated and mass production not possible. Recently, a domestic research team developed a carbon material without artificial defects commonly found during the production process of graphene while maintaining its original characteristics. The newly developed material can be used as a substitute for graphene in solar cells and semiconductor chips. Further, the developed process is based on the continuous and mass-produced process of carbon fiber, making it much easier for full-scale commercialization. In recognition of the innovative approach, the research was introduced on the cover of Nanoscale, a high impacting peer-reviewed journal in the field of nano science.

Making dreams come true: Making graphene from plastic?

Seoul, South Korea | Posted on July 2nd, 2014

The research team led by Dr. Han-Ik Joh at KIST along with Dr. Seok-In Na at Chonbuk National University and Dr. Byoung Gak Kim at KRICT synthesized carbon nanosheets similar to graphene using polymer, and directly used the transparent electrodes for organic solar cells. The research outcome was introduced in Nanoscale, a journal of Royal Society of Chemistry in the UK under the title of "One-step Synthesis of Carbon Nanosheets Converted from a Polycylic Compound and Their Direct Use as Transparent Electrodes of ITO-free Organic Solar Cells" and was selected as a cover story in the January 21st edition in recognition for this innovative and superb research findings.

To manufacture high quality graphene in large volume, the CVD (chemical vapor deposition)* method is widely used. However, this method requires intensive post-processing (transfer process) as it has to remove used metal after the manufacturing process and move the manufactured graphene to another board such as a solar cell substrate. In this process the quality quickly degrades as it is prone to wrinkles or cracks.
* CVD (Chemical Vapor Deposition): It is a method of manufacturing graphene on the board of metal film that serves as a catalyst. It manufactures the material by blowing out gas called the source gas onto the board. After it is done the metal has to be removed and graphene has to be transported to another board.

The research team developed "carbon nanosheet" in a two-step process, which consists of coating the substrate with a plymer solution and heating. Considering that the existing process consists of 8 steps to manufacture graphene, the new method makes it much simpler. In addition, the new method can be directly used as solar cell without any additional process.

The research team synthesized a polymer with a rigid ladder structure, namely PIM-1(Polymer of intrinsic microporosity-1) to form the CNS through the simpole process, which is spin-coated on the quarts substrates using PIM-1 solution with light green color and then heat-treated at 1,200 °C, leading to transparent and conductive CNS.

The carbon nanosheet can be mass-produced in a simpler process while having high quality since the new process bypasses the steps that are prone to formation of defects such as elimination of the metal substrate or transfer of graphene to another board. The final product is as effective as graphene.

Dr. Han Ik Joh at KIST said, "It is expected to be applied for commercialization of transparent and conductive 2D carbon materials without difficulty since this process is based on the continuous and mass-produced process of carbon fiber."
This is a follow-up research from the team that recently released its findings on the carbon nanosheet manufacturing based on polyacrylonitrile (published in the 2013 Carbon Vol. 55 and Applied Physics Letters Vol. 102). The new findings are even more meaningful as it offers deeper understanding on the growth mechanism of carbon nanosheet and much simpler manufacturing process.

The research was conducted with the funding from the KIST Proprietary Research Project and National Research Foundation of Korea.

####

For more information, please click here

Contacts:
Dr. Han-Ik Joh

82-102-732-5608

Copyright © Korea Institute of Science and Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Scientists change properties of zeolites to improve hemodialysis July 29th, 2016

Novel state of matter: Observation of a quantum spin liquid July 29th, 2016

A new type of quantum bits July 29th, 2016

Lonely atoms, happily reunited July 29th, 2016

Beating the heat a challenge at the nanoscale: Rice University scientists detect thermal boundary that hinders ultracold experiments July 28th, 2016

Graphene/ Graphite

Dirty to drinkable: Engineers develop novel hybrid nanomaterials to transform water July 28th, 2016

Thomas Swan and NGI announce unique partnership July 28th, 2016

New nontoxic process promises larger ultrathin sheets of 2-D nanomaterials July 27th, 2016

Govt.-Legislation/Regulation/Funding/Policy

A new type of quantum bits July 29th, 2016

Thomas Swan and NGI announce unique partnership July 28th, 2016

Penn team uses nanoparticles to break up plaque and prevent cavities July 28th, 2016

Beating the heat a challenge at the nanoscale: Rice University scientists detect thermal boundary that hinders ultracold experiments July 28th, 2016

Chip Technology

Novel state of matter: Observation of a quantum spin liquid July 29th, 2016

A new type of quantum bits July 29th, 2016

Beating the heat a challenge at the nanoscale: Rice University scientists detect thermal boundary that hinders ultracold experiments July 28th, 2016

New nontoxic process promises larger ultrathin sheets of 2-D nanomaterials July 27th, 2016

Announcements

Scientists change properties of zeolites to improve hemodialysis July 29th, 2016

Novel state of matter: Observation of a quantum spin liquid July 29th, 2016

A new type of quantum bits July 29th, 2016

Lonely atoms, happily reunited July 29th, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Scientists change properties of zeolites to improve hemodialysis July 29th, 2016

Novel state of matter: Observation of a quantum spin liquid July 29th, 2016

A new type of quantum bits July 29th, 2016

Lonely atoms, happily reunited July 29th, 2016

Tools

Lonely atoms, happily reunited July 29th, 2016

Pixel-array quantum cascade detector paves the way for portable thermal imaging devices: Research team from TU-Wien Center for Micro- and Nanostructures have developed a new 'cooler' sensing instrument thereby increasing energy-efficiency and enhancing mobility for diagnostic tes July 28th, 2016

WSU researchers 'watch' crystal structure change in real time: Breakthrough made possible by new Argonne facility July 27th, 2016

Enhancing molecular imaging with light: New technology platform increases spectroscopic resolution by 4 fold July 27th, 2016

Energy

New nontoxic process promises larger ultrathin sheets of 2-D nanomaterials July 27th, 2016

Designing climate-friendly concrete, from the nanoscale up: New understanding of concrete’s properties could increase lifetime of the building material, decrease emissions July 25th, 2016

An accelerated pipeline to open materials research: ORNL workflow system unites imaging, algorithms, and HPC to advance materials discovery and design July 24th, 2016

Researchers discover key mechanism for producing solar cells: Better understanding of perovskite solar cells could boost widespread use July 21st, 2016

Industrial

Dirty to drinkable: Engineers develop novel hybrid nanomaterials to transform water July 28th, 2016

Scientists move 1 step closer to creating an invisibility cloak July 15th, 2016

Yale researchers’ technology turns wasted heat into power June 27th, 2016

Industrial Nanotech, Inc. Signs Agreement With and Receives First Purchase Order from Major New Customer in China June 6th, 2016

Solar/Photovoltaic

New nontoxic process promises larger ultrathin sheets of 2-D nanomaterials July 27th, 2016

An accelerated pipeline to open materials research: ORNL workflow system unites imaging, algorithms, and HPC to advance materials discovery and design July 24th, 2016

Researchers discover key mechanism for producing solar cells: Better understanding of perovskite solar cells could boost widespread use July 21st, 2016

The future of perovskite solar cells has just got brighter -- come rain or shine: Korean researchers at POSTECH have succeeded in developing high-efficiency perovskite solar cells that retain excellent performance over two months in a very humid condition July 21st, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic