Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Shrinky Dinks close the gap for nanowires

The researchers clamp the plastic so that it only shrinks in one direction. Graphic by SungWoo Nam
The researchers clamp the plastic so that it only shrinks in one direction.

Graphic by SungWoo Nam

Abstract:
How do you put a puzzle together when the pieces are too tiny to pick up? Shrink the distance between them.

Engineers at the University of Illinois at Urbana-Champaign are using Shrinky Dinks, plastic that shrinks under high heat, to close the gap between nanowires in an array to make them useful for high-performance electronics applications. The group published its technique in the journal Nano Letters.

Shrinky Dinks close the gap for nanowires

Champaign, IL | Posted on July 1st, 2014

Nanowires are extremely fast, efficient semiconductors, but to be useful for electronics applications, they need to be packed together in dense arrays. Researchers have struggled to find a way to put large numbers of nanowires together so that they are aligned in the same direction and only one layer thick.

"Chemists have already done a brilliant job in making nanowires exhibit very high performance. We just don't have a way to put them into a material that we can handle," said study leader SungWoo Nam, a professor of mechanical science and engineering at the U. of I. "With the shrinking approach, people can make nanowires and nanotubes using any method they like and use the shrinking action to compact them into a higher density."

The researchers place the nanowires on the Shrinky Dinks plastic as they would for any other substrate, but then shrink it to bring the wires much closer together. This allows them to create very dense arrays of nanowires in a simple, flexible and very controllable way.

The shrinking method has the added bonus of bringing the nanowires into alignment as they increase in density. Nam's group demonstrated how even wires more than 30 degrees off-kilter can be brought into perfect alignment with their neighbors after shrinking.

"There's assembly happening at the same time as the density increases," Nam said, "so even if the wires are assembled in a disoriented direction we can still use this approach."

The plastic is clamped before baking so that it only shrinks in one direction, so that the wires pack together but do not buckle. Clamping in different places could direct the arrays into interesting formations, according to Nam. The researchers also can control how densely the wires pack by varying the length of time the plastic is heated. They also are exploring using lasers to precisely shrink the plastic in specific patterns.

Nam first had the idea for using Shrinky Dinks plastic to assemble nanomaterials after seeing a microfluidics device that used channels made of shrinking plastic. He realized that the high degree of shrinking and the low cost of plastic could have a huge impact on nanowire assembly and processing for applications.

"I'm interested in this concept of synthesizing new materials that are assembled from nanoscale building blocks," Nam said. "You can create new functions. For example, experiments have shown that film made of packed nanowires has properties that differ quite a bit from a crystal thin film."

One application the group is now exploring is a thin film solar cell, made of densely packed nanowires, that could harvest energy from light much more efficiently than traditional thin-film solar cells.

####

For more information, please click here

Contacts:
Liz Ahlberg
Physical Sciences Editor
217-244-1073


SungWoo Nam
217-300-0267

Copyright © University of Illinois at Urbana-Champaign

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The paper, “Assembly and Densification of Nanowire Arrays via Shrinkage,” is available online:

Related News Press

News and information

GS7 Graphene Sensor maybe Solution in Fight Against Cancer January 25th, 2015

Toyocolor to Launch New Carbon Nanotube Materials at nano tech 2015 January 24th, 2015

NANOPOSTER 2015 - 5th Virtual Nanotechnology Conference - call for abstracts January 24th, 2015

Nanosensor Used for Simultaneous Determination of Effective Tea Components January 24th, 2015

Thin films

New Molecular Beam Epitaxy deposition equipment at the ICN2 January 22nd, 2015

Self-assembled nanotextures create antireflective surface on silicon solar cells: Nanostructured surface textures-with shapes inspired by the structure of moths' eyes-prevent the reflection of light off silicon, improving conversion of sunlight to electricity January 21st, 2015

Solving an organic semiconductor mystery: Berkeley Lab researchers uncover hidden structures in domain interfaces that hamper performance January 16th, 2015

Researchers develop novel multiferroic materials and devices integrated with silicon chips January 13th, 2015

Molecular Nanotechnology

Going with the flow January 16th, 2015

From the bottom up: Manipulating nanoribbons at the molecular level: Berkeley Lab and UC Berkeley team engineers the shape and properties of nanoscale strips of graphene January 12th, 2015

DNA Origami Could Lead to Nano “Transformers” for Biomedical Applications: Tiny hinges and pistons hint at possible complexity of future nano-robots January 5th, 2015

'Mind the gap' between atomically thin materials December 23rd, 2014

Nanoelectronics

Rice-sized laser, powered one electron at a time, bodes well for quantum computing January 15th, 2015

Rapid journey through a crystal lattice: Researchers measure how fast electrons move through single atomic layers January 14th, 2015

A new step towards using graphene in electronic applications January 14th, 2015

SUNY Board Appoints Dr. Alain Kaloyeros as Founding President of SUNY Polytechnic Institute January 13th, 2015

Discoveries

GS7 Graphene Sensor maybe Solution in Fight Against Cancer January 25th, 2015

Nanosensor Used for Simultaneous Determination of Effective Tea Components January 24th, 2015

The latest fashion: Graphene edges can be tailor-made: Rice University theory shows it should be possible to tune material's properties January 24th, 2015

Silver nanowires demonstrate unexpected self-healing mechanism: The material has potential for flexible electronics January 23rd, 2015

Materials/Metamaterials

Toyocolor to Launch New Carbon Nanotube Materials at nano tech 2015 January 24th, 2015

The latest fashion: Graphene edges can be tailor-made: Rice University theory shows it should be possible to tune material's properties January 24th, 2015

Silver nanowires demonstrate unexpected self-healing mechanism: The material has potential for flexible electronics January 23rd, 2015

Scientists 'bend' elastic waves with new metamaterials that could have commercial applications: Materials could benefit imaging and military enhancements such as elastic cloaking January 23rd, 2015

Announcements

GS7 Graphene Sensor maybe Solution in Fight Against Cancer January 25th, 2015

Toyocolor to Launch New Carbon Nanotube Materials at nano tech 2015 January 24th, 2015

NANOPOSTER 2015 - 5th Virtual Nanotechnology Conference - call for abstracts January 24th, 2015

Nanosensor Used for Simultaneous Determination of Effective Tea Components January 24th, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Nanosensor Used for Simultaneous Determination of Effective Tea Components January 24th, 2015

New technique helps probe performance of organic solar cell materials January 23rd, 2015

Iranian Scientists Produce Graphene-Based Oxygen Sensor January 23rd, 2015

Silver nanowires demonstrate unexpected self-healing mechanism: The material has potential for flexible electronics January 23rd, 2015

Energy

New technique helps probe performance of organic solar cell materials January 23rd, 2015

Transparent artificial nacre: A brick wall at the nanoscale January 22nd, 2015

Teijin to Participate in Nano Tech 2015 January 22nd, 2015

The path to artificial photosynthesis: HZB researchers describe efficient manganese catalyst capable of converting light to chemical energy January 21st, 2015

Solar/Photovoltaic

New technique helps probe performance of organic solar cell materials January 23rd, 2015

Teijin to Participate in Nano Tech 2015 January 22nd, 2015

The path to artificial photosynthesis: HZB researchers describe efficient manganese catalyst capable of converting light to chemical energy January 21st, 2015

Self-assembled nanotextures create antireflective surface on silicon solar cells: Nanostructured surface textures-with shapes inspired by the structure of moths' eyes-prevent the reflection of light off silicon, improving conversion of sunlight to electricity January 21st, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE