Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > A smashing new look at nanoribbons: Rice University lab unzips nanotubes into ribbons by shooting them at a target

Molecular simulations and electron microscope images show what happens to a carbon nanotube when the end of it strikes a target directly at about 15,000 miles per hour. Rice University researchers found the nanotubes split into useful nanoribbons.Credit: Ajayan Group/Rice University
Molecular simulations and electron microscope images show what happens to a carbon nanotube when the end of it strikes a target directly at about 15,000 miles per hour. Rice University researchers found the nanotubes split into useful nanoribbons.

Credit: Ajayan Group/Rice University

Abstract:
Carbon nanotubes "unzipped" into graphene nanoribbons by a chemical process invented at Rice University are finding use in all kinds of projects, but Rice scientists have now found a chemical-free way to unzip them.

A smashing new look at nanoribbons: Rice University lab unzips nanotubes into ribbons by shooting them at a target

Houston, TX | Posted on June 30th, 2014

The Rice lab of materials scientist Pulickel Ajayan discovered that nanotubes that hit a target end first turn into mostly ragged clumps of atoms. But nanotubes that happen to broadside the target unzip into handy ribbons that can be used in composite materials for strength and applications that take advantage of their desirable electrical properties.

The Rice researchers led by graduate student Sehmus Ozden reported their finding in the American Chemical Society journal Nano Letters.

The result was a surprise, Ozden said. "Until now, we knew we could use mechanical forces to shorten and cut carbon nanotubes. This is the first time we have showed carbon nanotubes can be unzipped using mechanical forces."

The researchers fired pellets of randomly oriented, multiwalled carbon nanotubes from a light gas gun built by the Rice lab of materials scientist Enrique Barrera with funding from NASA. The pellets impacted an aluminum target in a vacuum chamber at about 15,000 miles per hour. When they inspected the resulting carbon rubble, they found nanotubes that smashed into the target end first or at a sharp angle simply deformed into a crumpled nanotube. But tubes that hit lengthwise actually split into ribbons with ragged edges.

"Hypervelocity impact tests are mostly used to simulate the impact of different projectiles on shields, spacecraft and satellites," Ozden said. "We were investigating possible applications for carbon nanotubes in space when we got this result."

The effect was confirmed through molecular simulations. They showed that when multiwalled tubes impact the target, the outer tube flattens, hitting the inside tubes and unzipping them in turn. Single-wall nanotubes do just the opposite; when the tube flattens, the bottom wall hits the inside of the top wall, which unzips from the middle out to the edges.

Ozden explained that the even distribution of stress along the belly-flopping nanotube, which is many times longer than it is wide, breaks carbon bonds in a line nearly simultaneously.

The researchers said 70 to 80 percent of the nanotubes in a pellet unzip to one degree or another.

Ozden said the process eliminates the need to clean chemical residues from nanoribbons produced through current techniques. "One-step, chemical-free, clean and high-quality graphene nanoribbons can be produced using our method. They're potential candidates for next-generation electronic materials," he said.

Co-authors include Pedro Autreto, a postdoctoral researcher at the State University of Campinas, Brazil, who has a complimentary appointment at Rice; graduate student Chandra Sekhar Tiwary of Rice and the Indian Institute of Science, Bangalore; graduate student Suman Khatiwada of Rice; Leonardo Machado and Douglas Galvao of the State University of Campinas; and Robert Vajtai, a senior faculty fellow at Rice. Barrera is a professor of materials science and nanoengineering. Ajayan is Rice's Benjamin M. and Mary Greenwood Anderson Professor in Mechanical Engineering and Materials Science and of chemistry, and chair of the Department of Materials Science and NanoEngineering.

The Department of Defense, U.S. Air Force Office of Scientific Research through a Multidisciplinary University Research Institute grant, and the Brazilian agencies National Council for Scientific and Technological Development, Coordination for the Improvement of Higher Education Personnel and the São Paulo Research Foundation supported the research.

####

About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,920 undergraduates and 2,567 graduate students, Rice's undergraduate student-to-faculty ratio is 6.3-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 2 for "best value" among private universities by Kiplinger's Personal Finance.

Follow Rice News and Media Relations via Twitter @RiceUNews

For more information, please click here

Contacts:
David Ruth
713-348-6327


Mike Williams
713-348-6728

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Read the abstract at:

Ajayan Research Group:

Enrique Barrera:

Department of Materials Science and NanoEngineering:

Related News Press

News and information

CubeSat Structures Competition Opens Space Design to Students of the World December 16th, 2017

Record high photoconductivity for new metal-organic framework material December 15th, 2017

Error-free into the quantum computer age December 15th, 2017

Leti Will Demonstrate First 3D Anti-Crash Solution for Embedding in Drones: Fitted on a Mass-Market Microcontroller, 360Fusion Software Technology Detects any Dynamic Obstacle and Helps Guide Drones Away from Collisions December 15th, 2017

Graphene/ Graphite

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure: Researchers are the first to observe the electronic structure of graphene in an engineered semiconductor; finding could lead to progress in advanced optoelectronics and data processing December 13th, 2017

UCLA chemists synthesize narrow ribbons of graphene using only light and heat: Tiny structures could be next-generation solution for smaller electronic devices December 8th, 2017

Printing Flexible Graphene Supercapacitors December 1st, 2017

Fast flowing heat in graphene heterostructures: Surprisingly fast heat flow from graphene to its surrounding November 29th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Synthetic protein packages its own genetic material and evolves computationally designed protein assemblies are advancing research in synthetic life and in targeted drug delivery December 15th, 2017

Sandia researchers make solid ground toward better lithium-ion battery interfaces: Reducing the traffic jam in batteries December 13th, 2017

Perking up and crimping the 'bristles' of polyelectrolyte brushes December 13th, 2017

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure: Researchers are the first to observe the electronic structure of graphene in an engineered semiconductor; finding could lead to progress in advanced optoelectronics and data processing December 13th, 2017

Nanotubes/Buckyballs/Fullerenes/Nanorods

Scientists make transparent materials absorb light December 1st, 2017

Researchers advance technique to detect ovarian cancer: Rice, MD Anderson use fluorescent carbon nanotube probes to achieve first in vivo success November 30th, 2017

NanoSummit in Luxembourg: single wall carbon nanotubes have entered our lives as we approach a nanoaugmented future November 23rd, 2017

Fine felted nanotubes : Research team of Kiel University develops new composite material made of carbon nanotubes November 22nd, 2017

Discoveries

Quantum memory with record-breaking capacity based on laser-cooled atoms December 15th, 2017

Record high photoconductivity for new metal-organic framework material December 15th, 2017

Error-free into the quantum computer age December 15th, 2017

Synthetic protein packages its own genetic material and evolves computationally designed protein assemblies are advancing research in synthetic life and in targeted drug delivery December 15th, 2017

Announcements

CubeSat Structures Competition Opens Space Design to Students of the World December 16th, 2017

Record high photoconductivity for new metal-organic framework material December 15th, 2017

Error-free into the quantum computer age December 15th, 2017

Leti Will Demonstrate First 3D Anti-Crash Solution for Embedding in Drones: Fitted on a Mass-Market Microcontroller, 360Fusion Software Technology Detects any Dynamic Obstacle and Helps Guide Drones Away from Collisions December 15th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Quantum memory with record-breaking capacity based on laser-cooled atoms December 15th, 2017

Record high photoconductivity for new metal-organic framework material December 15th, 2017

Error-free into the quantum computer age December 15th, 2017

Synthetic protein packages its own genetic material and evolves computationally designed protein assemblies are advancing research in synthetic life and in targeted drug delivery December 15th, 2017

Military

Synthetic protein packages its own genetic material and evolves computationally designed protein assemblies are advancing research in synthetic life and in targeted drug delivery December 15th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

Promising sensors for submarines, mines and spacecraft: MSU scientists are developing nanostructured gas sensors that would work at room temperature November 10th, 2017

Leti Joins DARPA-Funded Project to Develop Implantable Device for Restoring Vision November 9th, 2017

Research partnerships

Perking up and crimping the 'bristles' of polyelectrolyte brushes December 13th, 2017

Wheat gets boost from purified nanotubes: Rice University toxicity study shows plant growth enhanced by -- but only by -- purified nanotubes December 6th, 2017

Copper will replace toxic palladium and expensive platinum in the synthesis of medications: The effectiveness of copper nanoparticles as a catalyst has been proven December 5th, 2017

Researchers advance technique to detect ovarian cancer: Rice, MD Anderson use fluorescent carbon nanotube probes to achieve first in vivo success November 30th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project