Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Shaken, not stirred -- mythical god's capsules please!

These are typical capsules (mainly Janus capsules) obtained with the method described in the press release of the Institute of Physical Chemistry of the Polish Academy of Sciences in Warsaw.

Credit: adopted from Nat. Commun. 5, 3945 (2014)
These are typical capsules (mainly Janus capsules) obtained with the method described in the press release of the Institute of Physical Chemistry of the Polish Academy of Sciences in Warsaw.

Credit: adopted from Nat. Commun. 5, 3945 (2014)

Abstract:
Everything depends on how you look at them. Looking from one side you will see one face; and when looking from the opposite side - you will see a different one. So appear Janus capsules, miniature, hollow structures, in different fragments composed of different micro- and nanoparticles. Theoreticians were able to design models of such capsules, but a real challenge was to produce them. Now, Janus capsules can be produced easily and at low cost.

Shaken, not stirred -- mythical god's capsules please!

Warsaw, Poland | Posted on June 26th, 2014

Janus, the old Roman god of beginnings and transitions, attracted believers' attention with his two faces, each looking to different direction of the world. Janus capsules - 'bubbles' made up of two shells stuck one another, each composed of micro- or nanoparticles of different properties - have been for some time attracting the researchers' attention. They see in the capsules an excellent tool for transporting drugs and a vehicle leading to innovative materials. To have, however, Janus capsules generally accessible, efficient methods for their mass production must be developed. An important step in this direction is the achievement of researchers from the Norwegian and French research institutions and the Institute of Physical Chemistry of the Polish Academy of Sciences (IPC PAS) in Warsaw, reported recently in one of the most reputable scientific journals: "Nature Communications".

At present, it is not a problem to produce Janus spheres - round, entirely filled micro- and nanoobjects with one part having different properties than the other. Such spheres can be, for instance, produced by sticking together two drops of different substances. After merging, the new drop requires a sufficiently fast fixation only, e.g., by cooling it down or initiating polymerisation of its materials. For instance, Janus spheres are particles with white and black halves, used for image generation in electrophoretic displays incorporated in e-book reading devices.

"Janus capsules differ from Janus spheres: the former are hollow structures, and their partially permeable shell is made of colloidal particles. How to make such a 'two-faced bubble' using micro- and nanoparticles? Many researchers reflect on the problem. We proposed a really not complicated solution", says Dr Zbigniew Rozynek (IPC PAS), who experimentally studied Janus capsules during his postdoctoral training at Norwegian University of Science and Technology in Trondheim.

In their experiments, an international team of researchers produced Janus capsules with drops of single millilitres in volume. The drops were coated, for instance, with polystyrene or glass nanoparticles with diameters of about 500 nm (billionth parts of a meter) or 1000 nm, respectively. Also differently coloured polyethylene particles were used.

The experiments were performed with oil drops suspended in another oil. To a so prepared environment micro- or nanoparticles of one type were placed and deposited on the surface of a selected drop. Then, particles of another type were brought to the surface of the second drop. Due to the action of capillary forces, the particles were durably kept on the surfaces of both drops, being approximately uniformly distributed.

When an external electric field was turned on, microflows were induced inside and outside the drops. The microflows transported the particles toward the electric 'equator'. In this step, the packing of colloidal particles could be controlled by shaking the drops in a slowly alternating electric field. The way how the particles are packed is an important factor, as it determines the number and size of pores of the future capsule, and consequently the capsule permeability.

The microflows around the electric equators of the drops resulted in formation of a ring-shaped ribbon, composed of densely packed particles , whereas both electric 'poles' became particles-free regions. At the same time, the poles of each drop were acquiring opposite electric charges.

Opposite electric charges attract one another, so the drops with charged poles were heading to each other. In this step, the only thing to do was to convince both drops not only to adjoin with their poles, but actually to merge. For that purpose the long-known electrocoalescence was used: the drops were stimulated for faster merging by an electric field. Finally the drops electrocoalesced, resulting in the formation of a Janus capsule. Due to a dense packing of particles within the capsule the particles of different types virtually did not mix with each other.

"It's like the famous James Bond's martini: it was always to be shaken, not stirred", laughs Dr Rozynek.

The ultimate capsule appearance was determined by the number of particles deposited on the surfaces of initial drops. If the particles covered both drops with a uniform film, extending almost to the poles, the coalescence resulted in a non-spherical structure. When empty areas around the poles were suitably larger, the Janus capsules acquired a spherical shape. Finally, if the ribbons around the equators of the initial drops were narrow, the coalescence resulted in formation of a structure, which could be called a Janus ring.

The rings with two parts composed of two different types of particles provide interesting opportunities. They can be further stuck each other and produce more complex striped structures. The capsules could be then composed of alternately placed strips of particles, with each strip having different properties than its neighbours.

Janus capsules enable encapsulation of microobjects, nanoparticles or molecules, which must be protected against the environment because of their sensitivity or reactivity. Different properties of both capsule parts make it easier to control the movement of the capsules and the release of their contents. In view of these factors, Janus capsules may find numerous applications. The proposed method for producing the Janus capsules is potentially of great importance for pharmaceutical, dye or food industries, as well as for the development of materials engineering and medicine.

###

This press release was prepared thanks to the NOBLESSE grant under the activity "Research potential" of the 7th Framework Programme of the European Union.

####

About Institute of Physical Chemistry of the Polish Academy of Sciences
The Institute of Physical Chemistry of the Polish Academy of Sciences (http://www.ichf.edu.pl/) was established in 1955 as one of the first chemical institutes of the PAS. The Institute's scientific profile is strongly related to the newest global trends in the development of physical chemistry and chemical physics. Scientific research is conducted in nine scientific departments. CHEMIPAN R&D Laboratories, operating as part of the Institute, implement, produce and commercialise specialist chemicals to be used, in particular, in agriculture and pharmaceutical industry. The Institute publishes approximately 200 original research papers annually.

For more information, please click here

Contacts:
Dr. Zbigniew Rozynek

Copyright © Institute of Physical Chemistry of the Polish Academy of Sci

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Stanford breakthrough heralds super-efficient light-based computers: Light can transmit more data while consuming far less power than electricity, and an engineering feat brings optical data transport closer to replacing wires May 29th, 2015

Donuts, math, and superdense teleportation of quantum information May 29th, 2015

OSU researchers prove magnetism can control heat, sound: Team leverages OSC services to help confirm, interpret experimental findings May 29th, 2015

Two UCSB Professors Receive Early Career Research Awards: The Department of Energy’s award for young scientists acknowledges UC Santa Barbara’s standing as a top tier research institution May 29th, 2015

Nanomedicine

New chip makes testing for antibiotic-resistant bacteria faster, easier: Researchers at the University of Toronto design diagnostic chip to reduce testing time from days to one hour, allowing doctors to pick the right antibiotic the first time May 28th, 2015

Arrowhead to Present at Jefferies 2015 Healthcare Conference May 27th, 2015

Seeing the action: UCSB researchers develop a novel device to image the minute forces and actions involved in cell membrane hemifusion May 27th, 2015

Nanotechnology identifies brain tumor types through MRI 'virtual biopsy' in animal studies: If results are confirmed in humans, tumor cells could someday be diagnosed by MRI imaging and treated with tumor-specific IV injections; new NIH grant will fund future study May 27th, 2015

Discoveries

Stanford breakthrough heralds super-efficient light-based computers: Light can transmit more data while consuming far less power than electricity, and an engineering feat brings optical data transport closer to replacing wires May 29th, 2015

Donuts, math, and superdense teleportation of quantum information May 29th, 2015

OSU researchers prove magnetism can control heat, sound: Team leverages OSC services to help confirm, interpret experimental findings May 29th, 2015

New technique speeds nanoMRI imaging: Multiplexing technique for nanoscale magnetic resonance imaging developed by researchers in Switzerland cuts normal scan time from two weeks to two days May 28th, 2015

Materials/Metamaterials

SouthWest NanoTechnologies Introduces AgeNT™ Transparent Conductor System at SID Display Week, Booth #543 May 28th, 2015

Physicists precisely measure interaction between atoms and carbon surfaces May 28th, 2015

Linking superconductivity and structure May 28th, 2015

Controlled Release of Anticorrosive Materials in Spot by Nanocarriers May 27th, 2015

Announcements

Stanford breakthrough heralds super-efficient light-based computers: Light can transmit more data while consuming far less power than electricity, and an engineering feat brings optical data transport closer to replacing wires May 29th, 2015

Donuts, math, and superdense teleportation of quantum information May 29th, 2015

OSU researchers prove magnetism can control heat, sound: Team leverages OSC services to help confirm, interpret experimental findings May 29th, 2015

Two UCSB Professors Receive Early Career Research Awards: The Department of Energy’s award for young scientists acknowledges UC Santa Barbara’s standing as a top tier research institution May 29th, 2015

Food/Agriculture/Supplements

Global Nano-Enabled Packaging Market For Food and Beverages Will Reach $15.0 billion in 2020 May 26th, 2015

Supercomputer unlocks secrets of plant cells to pave the way for more resilient crops: IBM partners with University of Melbourne and UQ May 21st, 2015

QuantumSphere Announces Production-Scale Validation of Nano Iron Catalysts for Multi-Billion Dollar Ammonia Industry: Significant Improvement in Ammonia Production for Agricultural Fertilizer, Global Food Crops May 7th, 2015

Nanoparticles in consumer products can significantly alter normal gut microbiome May 4th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project