Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Micro-manufacturing breakthrough is wired for sound

Researcher Dr Amgad Rezk with the lithium niobate chip.
Researcher Dr Amgad Rezk with the lithium niobate chip.

Abstract:
In a breakthrough discovery, researchers at RMIT University in Melbourne, Australia, have harnessed the power of sound waves to enable precision micro- and nano-manufacturing.

Micro-manufacturing breakthrough is wired for sound

Melbourne, Australia | Posted on June 24th, 2014

The researchers have demonstrated how high-frequency sound waves can be used to precisely control the spread of thin film fluid along a specially-designed chip, in a paper published today in Proceedings of the Royal Society A.

With thin film technology the bedrock of microchip and microstructure manufacturing, the pioneering research offers a significant advance - potential applications range from thin film coatings for paint and wound care to 3D printing, micro-casting and micro-fluidics.

Professor James Friend, Director of the MicroNano Research Facility at RMIT, said the researchers had developed a portable system for precise, fast and unconventional micro- and nano-fabrication.

"By tuning the sound waves, we can create any pattern we want on the surface of a microchip," Professor Friend said.

"Manufacturing using thin film technology currently lacks precision ­- structures are physically spun around to disperse the liquid and coat components with thin film.

"We've found that thin film liquid either flows towards or away from high-frequency sound waves, depending on its thickness.

"We not only discovered this phenomenon but have also unravelled the complex physics behind the process, enabling us to precisely control and direct the application of thin film liquid at a micro and nano-scale."

The new process, which the researchers have called "acoustowetting", works on a chip made of lithium niobate ­- a piezoelectric material capable of converting electrical energy into mechanical pressure.

The surface of the chip is covered with microelectrodes and the chip is connected to a power source, with the power converted to high-frequency sound waves. Thin film liquid is added to the surface of the chip, and the sound waves are then used to control its flow.

The research shows that when the liquid is ultra-thin ­- at nano and sub-micro depths - it flows away from the high-frequency sound waves.

The flow reverses at slightly thicker dimensions, moving towards the sound waves. But at a millimetre or more in depth, the flow reverses again, moving away.

Full bibliographic information

Title: Double Flow Reversal in Thin Liquid Films Driven by MHz Order Surface Vibration
Authors: Amgad R. Rezk, Ofer Manor; Leslie Y. Yeo, and James R. Friend
Journal: Proceedings of the Royal Society A
Date: Wednesday, 25 June 2014

####

About RMIT University
RMIT University is a global university of technology and design, focused on creating solutions that transform the future for the benefit of people and their environments.

One of Australia’s original educational institutions founded in 1887, RMIT is now the nation’s largest and most internationalised tertiary institution with more than 82,000 students.

The University enjoys an international reputation for excellence in professional and practical education, applied research, and engagement with the needs of industry and the cities in which it is located.

RMIT has three campuses in Melbourne, two campuses in Vietnam and an office in Barcelona, Spain. The University also offers programs through partners in Singapore, Hong Kong, mainland China, Indonesia, Sri Lanka, Spain and Germany, and enjoys research and industry partnerships on every continent.

RMIT is ranked in the top 15 among all Australian universities (2013 QS World University Rankings) and has a 5-Star QS ranking for excellence in higher education.

In 2013, RMIT was named International Education Provider of the Year in the inaugural Victorian International Education Awards.

For more information, please click here

Contacts:
David Glanz

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Physics

University of Minnesota engineers make sound loud enough to bend light on a computer chip: Device could improve wireless communications systems November 28th, 2014

Study details laser pulse effects on behavior of electrons November 28th, 2014

Cooling with the coldest matter in the world November 24th, 2014

Researchers discern the shapes of high-order Brownian motions November 17th, 2014

News and information

University of Minnesota engineers make sound loud enough to bend light on a computer chip: Device could improve wireless communications systems November 28th, 2014

Study details laser pulse effects on behavior of electrons November 28th, 2014

Single-atom gold catalysts may offer path to low-cost production of fuel and chemicals November 28th, 2014

'Giant' charge density disturbances discovered in nanomaterials: Juelich researchers amplify Friedel oscillations in thin metallic films November 26th, 2014

Microfluidics/Nanofluidics

The mysterious 'action at a distance' between liquid containers November 26th, 2014

Thin films

'Giant' charge density disturbances discovered in nanomaterials: Juelich researchers amplify Friedel oscillations in thin metallic films November 26th, 2014

New way to move atomically thin semiconductors for use in flexible devices November 13th, 2014

3D printing

Purdue 3-D printing innovation capable of making stronger, lighter metal works for auto, aerospace industries November 20th, 2014

Videos/Movies

Purdue 3-D printing innovation capable of making stronger, lighter metal works for auto, aerospace industries November 20th, 2014

New way to move atomically thin semiconductors for use in flexible devices November 13th, 2014

Nanomedicine

Production of Anticancer Drug from Nanofibers in Iran November 28th, 2014

Vegetable oil ingredient key to destroying gastric disease bacteria: In mice, therapeutic nanoparticles dampen H. pylori bacteria and inflammation that lead to ulcers and gastric cancer November 25th, 2014

Research reveals how our bodies keep unwelcome visitors out of cell nuclei November 24th, 2014

ASU, IBM move ultrafast, low-cost DNA sequencing technology a step closer to reality November 24th, 2014

Discoveries

University of Minnesota engineers make sound loud enough to bend light on a computer chip: Device could improve wireless communications systems November 28th, 2014

Study details laser pulse effects on behavior of electrons November 28th, 2014

Production of Anticancer Drug from Nanofibers in Iran November 28th, 2014

The mysterious 'action at a distance' between liquid containers November 26th, 2014

Materials/Metamaterials

'Giant' charge density disturbances discovered in nanomaterials: Juelich researchers amplify Friedel oscillations in thin metallic films November 26th, 2014

Lawrence Livermore researchers develop efficient method to produce nanoporous metals November 25th, 2014

Research yields material made of single-atom layers that snap together like Legos November 25th, 2014

Aromatic food chemistry to the making of copper nanowires November 24th, 2014

Announcements

University of Minnesota engineers make sound loud enough to bend light on a computer chip: Device could improve wireless communications systems November 28th, 2014

Study details laser pulse effects on behavior of electrons November 28th, 2014

Single-atom gold catalysts may offer path to low-cost production of fuel and chemicals November 28th, 2014

Production of Anticancer Drug from Nanofibers in Iran November 28th, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

University of Minnesota engineers make sound loud enough to bend light on a computer chip: Device could improve wireless communications systems November 28th, 2014

Study details laser pulse effects on behavior of electrons November 28th, 2014

Single-atom gold catalysts may offer path to low-cost production of fuel and chemicals November 28th, 2014

Production of Anticancer Drug from Nanofibers in Iran November 28th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More












ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE