Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Micro-manufacturing breakthrough is wired for sound

Researcher Dr Amgad Rezk with the lithium niobate chip.
Researcher Dr Amgad Rezk with the lithium niobate chip.

Abstract:
In a breakthrough discovery, researchers at RMIT University in Melbourne, Australia, have harnessed the power of sound waves to enable precision micro- and nano-manufacturing.

Micro-manufacturing breakthrough is wired for sound

Melbourne, Australia | Posted on June 24th, 2014

The researchers have demonstrated how high-frequency sound waves can be used to precisely control the spread of thin film fluid along a specially-designed chip, in a paper published today in Proceedings of the Royal Society A.

With thin film technology the bedrock of microchip and microstructure manufacturing, the pioneering research offers a significant advance - potential applications range from thin film coatings for paint and wound care to 3D printing, micro-casting and micro-fluidics.

Professor James Friend, Director of the MicroNano Research Facility at RMIT, said the researchers had developed a portable system for precise, fast and unconventional micro- and nano-fabrication.

"By tuning the sound waves, we can create any pattern we want on the surface of a microchip," Professor Friend said.

"Manufacturing using thin film technology currently lacks precision ­- structures are physically spun around to disperse the liquid and coat components with thin film.

"We've found that thin film liquid either flows towards or away from high-frequency sound waves, depending on its thickness.

"We not only discovered this phenomenon but have also unravelled the complex physics behind the process, enabling us to precisely control and direct the application of thin film liquid at a micro and nano-scale."

The new process, which the researchers have called "acoustowetting", works on a chip made of lithium niobate ­- a piezoelectric material capable of converting electrical energy into mechanical pressure.

The surface of the chip is covered with microelectrodes and the chip is connected to a power source, with the power converted to high-frequency sound waves. Thin film liquid is added to the surface of the chip, and the sound waves are then used to control its flow.

The research shows that when the liquid is ultra-thin ­- at nano and sub-micro depths - it flows away from the high-frequency sound waves.

The flow reverses at slightly thicker dimensions, moving towards the sound waves. But at a millimetre or more in depth, the flow reverses again, moving away.

Full bibliographic information

Title: Double Flow Reversal in Thin Liquid Films Driven by MHz Order Surface Vibration
Authors: Amgad R. Rezk, Ofer Manor; Leslie Y. Yeo, and James R. Friend
Journal: Proceedings of the Royal Society A
Date: Wednesday, 25 June 2014

####

About RMIT University
RMIT University is a global university of technology and design, focused on creating solutions that transform the future for the benefit of people and their environments.

One of Australia’s original educational institutions founded in 1887, RMIT is now the nation’s largest and most internationalised tertiary institution with more than 82,000 students.

The University enjoys an international reputation for excellence in professional and practical education, applied research, and engagement with the needs of industry and the cities in which it is located.

RMIT has three campuses in Melbourne, two campuses in Vietnam and an office in Barcelona, Spain. The University also offers programs through partners in Singapore, Hong Kong, mainland China, Indonesia, Sri Lanka, Spain and Germany, and enjoys research and industry partnerships on every continent.

RMIT is ranked in the top 15 among all Australian universities (2013 QS World University Rankings) and has a 5-Star QS ranking for excellence in higher education.

In 2013, RMIT was named International Education Provider of the Year in the inaugural Victorian International Education Awards.

For more information, please click here

Contacts:
David Glanz

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Physics

Breakthrough with a chain of gold atoms: In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport February 20th, 2017

Sorting machine for atoms:Researchers at the University of Bonn clear a further hurdle on the path to creating quantum computers February 10th, 2017

The shape of melting in two dimensions: University of Michigan team uses Titan to explore fundamental phase transitions February 2nd, 2017

News and information

Breakthrough with a chain of gold atoms: In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport February 20th, 2017

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

Particles from outer space are wreaking low-grade havoc on personal electronics February 19th, 2017

Liquid metal nano printing set to revolutionize electronics: Creating integrated circuits just atoms thick February 18th, 2017

Videos/Movies

Graphene foam gets big and tough: Rice University's nanotube-reinforced material can be shaped, is highly conductive February 13th, 2017

First ever blueprint unveiled to construct a large scale quantum computer February 3rd, 2017

The shape of melting in two dimensions: University of Michigan team uses Titan to explore fundamental phase transitions February 2nd, 2017

Thin films

Dual-function nanorod LEDs could make multifunctional displays February 11th, 2017

NREL research pinpoints promise of polycrystalline perovskites February 8th, 2017

Microfluidics/Nanofluidics

DNA 'barcoding' allows rapid testing of nanoparticles for therapeutic delivery February 7th, 2017

Zeroing in on the true nature of fluids within nanocapillaries: While exploring the behavior of fluids at the nanoscale, a group of researchers at the French National Center for Scientific Research discovered a peculiar state of fluid mixtures contained in microscopic channels January 11th, 2017

3D printing/Additive-manufacturing

New stem cell technique shows promise for bone repair January 25th, 2017

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Nanomedicine

Good vibrations help reveal molecular details: Rice University scientists combine disciplines to pinpoint small structures in unlabeled molecules February 15th, 2017

In-cell molecular sieve from protein crystal February 14th, 2017

Cedars-Sinai, UCLA Scientists Use New ‘Blood Biopsies’ With Experimental Device to Speed Cancer Diagnosis and Predict Disease Spread: Leading-Edge Research Is Part of National Cancer Moonshot Initiative February 13th, 2017

Meta-lenses bring benchtop performance to small, hand-held spectrometer: Game-changing nanostructure-based lenses allow smaller devices, increased functionality February 9th, 2017

Discoveries

Breakthrough with a chain of gold atoms: In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport February 20th, 2017

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

Particles from outer space are wreaking low-grade havoc on personal electronics February 19th, 2017

Liquid metal nano printing set to revolutionize electronics: Creating integrated circuits just atoms thick February 18th, 2017

Materials/Metamaterials

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

Metamaterial: Mail armor inspires physicists: KIT researchers reverse hall coefficient -- medieval mail armor inspired development of metamaterial with novel properties February 15th, 2017

Research reveals novel quantum state in strange insulating materials February 14th, 2017

Graphene foam gets big and tough: Rice University's nanotube-reinforced material can be shaped, is highly conductive February 13th, 2017

Announcements

Breakthrough with a chain of gold atoms: In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport February 20th, 2017

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

Particles from outer space are wreaking low-grade havoc on personal electronics February 19th, 2017

Liquid metal nano printing set to revolutionize electronics: Creating integrated circuits just atoms thick February 18th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Breakthrough with a chain of gold atoms: In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport February 20th, 2017

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

Particles from outer space are wreaking low-grade havoc on personal electronics February 19th, 2017

Liquid metal nano printing set to revolutionize electronics: Creating integrated circuits just atoms thick February 18th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project