Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Singapore Researchers Use FEI Titan S/TEM to Link Plasmonics with Molecular Electronics: As described in the March 28 issue of Science, researchers discover quantum plasmonic tunneling – a phenomenon that may eventually lead to new, ultra-fast electrical circuits

Abstract:
FEI (NASDAQ: FEIC) congratulates its customers, National University of Singapore, Singapore University of Technology and Design, and the A*STAR institutes: Institute of High Performance Computing and Institute of Materials Research and Engineering, on their recent discovery of quantum plasmonic tunneling--a finding they described in Science on the 28th of March1 www.sciencemag.org/content/343/6178/1496.abstract.

Singapore Researchers Use FEI Titan S/TEM to Link Plasmonics with Molecular Electronics: As described in the March 28 issue of Science, researchers discover quantum plasmonic tunneling – a phenomenon that may eventually lead to new, ultra-fast electrical circuits

Hillsboro, OR | Posted on June 24th, 2014

Plasmon tunneling is a quantum-mechanical effect where electrons rapidly oscillate across very closely-spaced metal structures. Using a Titan™ scanning/transmission electron microscope (S/TEM), the scientists were able to not only observe this new phenomenon directly, but also control the frequency of the tunneling currents by placing single layers of different molecules between the closely-spaced metal particles. The speed of the switching will directly depend on the nature of the molecules used.

"In our research, we were able to demonstrate that the rapid current oscillations could take place over distances larger than a nanometer, which, although extremely small, opens up possibilities for new technological applications," states one of the researchers and Science paper authors, Dr Michel Bosman, Institute of Materials Research and Engineering, A*STAR, Singapore.

Surface plasmons in metal particles can be introduced by simply shining light of the right color on them. By using the researchers' approach, incoming light will then produce the small tunneling currents between the nearby metal particles. In effect, tiny electrical circuits are made that operate at enormously high speeds.

Today's electrical circuits can operate up to GHz frequencies, but due to design issues, this is close to their inherent speed limit at room temperature. In order for devices to work faster, entirely new circuit designs are required. The research presented here shows a possible route for such optical circuits, by light-generated tunneling currents with operation speeds tens of thousands of times faster than today's microprocessors.

Trisha Rice, vice president and general manager of Materials Science for FEI, comments, "This is incredible work being done by these researchers in Singapore, using the high-energy resolution of a monochromated Titan S/TEM to directly observe and control a quantum plasmonic tunneling event. Congratulations on this achievement and we look forward to learning of new and exciting results in this area."

1 "Quantum Plasmon Resonances Controlled by Molecular Tunnel Junctions," Shu Fen Tan et al, Science 343, 1496 (2014); DOI 10.1126/science. 1248797.

####

About FEI Company
FEI Company (Nasdaq: FEIC) designs, manufactures and supports a broad range of high-performance microscopy workflow solutions that provide images and answers at the micro-, nano- and picometer scales. Its innovation and leadership enable customers in industry and science to increase productivity and make breakthrough discoveries. Headquartered in Hillsboro, Ore., USA, FEI has over 2,600 employees and sales and service operations in more than 50 countries around the world. More information can be found at: www.fei.com.

FEI Safe Harbor Statement

This news release contains forward-looking statements that include statements regarding the performance capabilities and benefits of the Titan S/TEM. Factors that could affect these forward-looking statements include but are not limited to our ability to manufacture, ship, deliver and install the tools or software as expected; failure of the product or technology to perform as expected; unexpected technology problems and challenges; changes to the technology; the inability of FEI, its suppliers or project partners to make the technological advances required for the technology to achieve anticipated results; and the inability of the customer to deploy the tools or develop and deploy the expected new applications. Please also refer to our Form 10-K, Forms 10-Q, Forms 8-K and other filings with the U.S. Securities and Exchange Commission for additional information on these factors and other factors that could cause actual results to differ materially from the forward-looking statements. FEI assumes no duty to update forward-looking statements.

For more information, please click here

Contacts:
Sandy Fewkes
(media contact)
MindWrite Communications, Inc.
+1 408 224 4024


FEI Company
Fletcher Chamberlin
(investors and analysts)
Investor Relations
+1 503 726 7710

Copyright © FEI Company

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Physics

SUNY Poly NanoCollege Faculty Member Selected as American Physical Society Fellow: SUNY Poly Associate Professor of Nanoscience Dr. Vincent LaBella Recognized for Significant Technological Innovations that Enable Interactive Learning December 17th, 2014

Imaging

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

ORNL microscopy pencils patterns in polymers at the nanoscale December 17th, 2014

Unraveling the light of fireflies December 17th, 2014

News and information

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

ORNL microscopy pencils patterns in polymers at the nanoscale December 17th, 2014

Discoveries

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

ORNL microscopy pencils patterns in polymers at the nanoscale December 17th, 2014

Unraveling the light of fireflies December 17th, 2014

Fraud-proof credit card possible because of quantum physics December 16th, 2014

Announcements

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

ORNL microscopy pencils patterns in polymers at the nanoscale December 17th, 2014

Unraveling the light of fireflies December 17th, 2014

First Home-Made Edible Herbal Nanodrug Presented to Pharmacies across Iran December 17th, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Unraveling the light of fireflies December 17th, 2014

Pb islands in a sea of graphene magnetise the material of the future December 16th, 2014

Fraud-proof credit card possible because of quantum physics December 16th, 2014

Scientists trace nanoparticles from plants to caterpillars: Rice University study examines how nanoparticles behave in food chain December 16th, 2014

Tools

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

ORNL microscopy pencils patterns in polymers at the nanoscale December 17th, 2014

Unraveling the light of fireflies December 17th, 2014

Bruker Introduces BioScope Resolve High-Resolution BioAFM System: Featuring PeakForce Tapping for Quantitative Bio-Mechanical Property Mapping December 16th, 2014

Quantum nanoscience

Fraud-proof credit card possible because of quantum physics December 16th, 2014

Nanoscale resistors for quantum devices: The electrical characteristics of new thin-film chromium oxide resistors that can be tuned by controlling the oxygen content detailed in the 'Journal of Applied Physics' December 9th, 2014

High photosensitivity 2D-few-layered molybdenum diselenide phototransistors December 8th, 2014

Electron pairs on demand: Controlled emission and spatial splitting of electron pairs demonstrated December 4th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE