Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Sharper imaging using X-rays: HZB team develops three-dimensional volume diffraction optics for X-rays

These scanning electron micrographs show how accurately the three Fresnel zone plates were positioned above one another. 3D X-ray optics of this kind allow the resolutions and optical intensities to be considerably improved.
Image: S. Werner/HZB
These scanning electron micrographs show how accurately the three Fresnel zone plates were positioned above one another. 3D X-ray optics of this kind allow the resolutions and optical intensities to be considerably improved.

Image: S. Werner/HZB

Abstract:
Physicists at HZB have developed a process to generate improved lenses for X-ray microscopy that provide both better resolution and higher throughput. To accomplish this, they fabricate three-dimensional X-ray optics for volume diffraction that consist of on-chip stacked Fresnel zone plates. These three-dimensional nanostructures focus the incident X-rays much more efficiently and enable improved spatial resolution below ten nanometres.

Sharper imaging using X-rays: HZB team develops three-dimensional volume diffraction optics for X-rays

Berlin, Germany | Posted on June 23rd, 2014

In the future, this kind of novel X-ray optics should be available to users at the BESSY II synchrotron source. Among many applications, the improved resolution permits investigations on ultrastructural features in biological specimens as well as studies on nanostructures in novel battery systems.

The wavelength of light limits resolution in microscopy. Visible light can resolve structures on the order of a quarter micron, while the considerably shorter wavelength of X-rays can in principle resolve features down to a few nanometres. In addition, X-rays can also penetrate more deeply into specimens, so that internal structures of three-dimensional specimens can be investigated. However, though light in the visible region can be focussed using refractive lenses made of glass, this approach does not work with soft X-rays. In order to utilise X-rays for imaging, it is necessary to use Fresnel zone plates, which are made out of concentric rings composed of metals like nickel or gold. These metal rings diffract X-rays so that contributions from the different zones are constructively superposed at the focal point. The result is that Fresnel zone plates act as objective lenses to focus X-rays and can be employed in X-ray microscopes. The achievable spatial resolution depends on the smallest ring width that can be manufactured, which up to now has been about ten nanometres.

An improvement of spatial resolution to below ten nanometres poses both technological and fundamental physical problems. On the one hand, it is technologically extremely challenging to fabricate periodic zone structures having a ring width of less than ten nanometres and a height of a few hundred nanometres. On the other hand, theoretical calculations indicate that these types of optics with decreasing ring width would be increasingly inefficient and would simply collect too little light. This dilemma can be resolved with the help of volume diffraction. However, the approach requires zone features that simultaneously have an increasing tilt angle and a declining zone height versus radius, i.e. three-dimensional structured X-ray optics. "Theoretically, though, almost 100 per cent of the incident light could be utilised for the image," explains Dr. Stephan Werner from the Microscopy Research Group at the HZB Institute for Soft Matter and Functional Materials.

In a first step towards three-dimensional X-ray optics, the experts at HZB have manufactured three layers of Fresnel zone plates nearly perfectly above one another. "We have developed a process that enables on-chip stacking of Fresnel zone plates with a precision of less than two nanometres," says Dr. Gerd Schneider, who heads the Microscopy Research Group. The initial measurements demonstrate that this structure captures considerably more light for imaging than conventional Fresnel zone plates. "If we are successful in positioning five zone plate layers above one another, which is our next goal, we will be able to utilise a many times higher fraction of the incident X-ray light for imaging than has been available up to now," says Werner.

The HZB team is reporting on the development of the novel X-ray optics in the technical journal Nano Research. Users at BESSY II could be soon profiting from this advance as well. X-ray microscopy is an important technique for a wide range of research topics, for example in the life sciences to investigate cell organelles, viruses, and nanoparticles within cells, as well as for materials science and energy research to study novel electrochemical energy storage approaches in situ.

Nano Research 2014, 7(4): 528-535, DOI 10.1007/s12274-014-0419-x

####

For more information, please click here

Contacts:
Dr. Stephan Werner

49-308-062-13181

Copyright © Helmholtz-Zentrum Berlin für Materialien und Energie

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Iranian Scientists Use Artemisia Annua Plant to Produce Breast Cancer Drugs August 29th, 2015

Small but heading for the big time: Nanobiotix half year results for the six months ended 30 June 2015, in line with expectations: Major clinical achievements and corporate developments August 28th, 2015

A new technique to make drugs more soluble August 28th, 2015

Nanocatalysts improve processes for the petrochemical industry August 28th, 2015

National Space Society Welcomes Janet Ivey As New NSS Governor: Janet Ivey of Janet's Planet is NOW IN ORBIT as a member of the Board of Governors of the National Space Society August 27th, 2015

Imaging

Nanolab Technologies LEAPS Forward with High-Performance Analysis Services to the World: Nanolab Orders Advanced Local Electrode Atom Probe (LEAP®) Microscope from CAMECA Unit of AMETEK Materials Analysis Division August 27th, 2015

50 Years of Scanning Electron Microscopy from ZEISS: ZEISS celebrates the birth of the first commercial scanning electron microscope in 1965 August 26th, 2015

Announcing Oxford Instruments and School of Physics signing a Memorandum of Understanding August 26th, 2015

Kwansei Gakuin University in Hyogo, Japan, uses Raman microscopy to study crystallographic defects in silicon carbide wafers August 25th, 2015

Physics

Record-high pressure reveals secrets of matter: The most incompressible metal osmium at static pressures above 750 GPa August 25th, 2015

Southampton scientists find new way to detect ortho-para conversion in water August 25th, 2015

Biophysics: Formation of swarms in nanosystems August 18th, 2015

Discoveries

Iranian Scientists Use Artemisia Annua Plant to Produce Breast Cancer Drugs August 29th, 2015

A new technique to make drugs more soluble August 28th, 2015

Nanocatalysts improve processes for the petrochemical industry August 28th, 2015

CWRU researchers efficiently charge a lithium-ion battery with solar cell: Coupling with perovskite solar cell holds potential for cleaner cars and more August 27th, 2015

Announcements

Iranian Scientists Use Artemisia Annua Plant to Produce Breast Cancer Drugs August 29th, 2015

Small but heading for the big time: Nanobiotix half year results for the six months ended 30 June 2015, in line with expectations: Major clinical achievements and corporate developments August 28th, 2015

A new technique to make drugs more soluble August 28th, 2015

Nanocatalysts improve processes for the petrochemical industry August 28th, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Iranian Scientists Use Artemisia Annua Plant to Produce Breast Cancer Drugs August 29th, 2015

A new technique to make drugs more soluble August 28th, 2015

CWRU researchers efficiently charge a lithium-ion battery with solar cell: Coupling with perovskite solar cell holds potential for cleaner cars and more August 27th, 2015

Successful boron-doping of graphene nanoribbon August 27th, 2015

Tools

Nanolab Technologies LEAPS Forward with High-Performance Analysis Services to the World: Nanolab Orders Advanced Local Electrode Atom Probe (LEAP®) Microscope from CAMECA Unit of AMETEK Materials Analysis Division August 27th, 2015

Nanometrics to Participate in the Citi 2015 Global Technology Conference August 26th, 2015

50 Years of Scanning Electron Microscopy from ZEISS: ZEISS celebrates the birth of the first commercial scanning electron microscope in 1965 August 26th, 2015

Announcing Oxford Instruments and School of Physics signing a Memorandum of Understanding August 26th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic