Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Rice's Thomann wins CAREER grant to study photocatalysis: Rice lab's unique spectrometer will shed light on solar-powered CO2 reduction

 Isabell Thomann
CREDIT: Jeff Fitlow/Rice University
Isabell Thomann

CREDIT: Jeff Fitlow/Rice University

Abstract:
It's difficult to define Rice University scientist Isabell Thomann, whose research encompasses chemistry, optics, electrical engineering, energy and the environment -- just to name a few. But thanks to a prestigious CAREER Award from the National Science Foundation (NSF), Thomann's got the chance to focus her energies on a five-year quest to explore ways of using sunlight to reduce the carbon footprint of power plants.

Rice's Thomann wins CAREER grant to study photocatalysis: Rice lab's unique spectrometer will shed light on solar-powered CO2 reduction

Houston, TX | Posted on June 19th, 2014

"We are interested in improving photocatalysis, a class of processes in which we use light to drive chemical reactions," Thomann said. "This grant will focus on the reduction of carbon dioxide using sunlight, but the methods that we study in our lab can be broadly applied across many disciplines."

CAREER Awards are among the NSF's most competitive. Only about 400 are given each year across all disciplines. The awards, which include $400,000 in research funding, are given to "junior faculty who exemplify the role of teacher-scholars through outstanding research, excellent education and the integration of education and research within the context of the mission of their organizations," according to the NSF.

Thomann holds joint appointments in Rice's departments of Electrical and Computer Engineering, Chemistry, and Materials Science and NanoEngineering. One facet of her work focuses on designing and testing photocatalytic nanomaterials -- tiny bits of matter that interact with light to foster chemical reactions.

"Typically in a chemical reaction, you have a reactant, or chemical input A, that is used to produce a chemical product B," Thomann said. "It's rare that a reaction goes directly from A to B. Often there are a number of short-lived, intermediate chemicals that are produced in between. We would like to better understand what these short-lived intermediates are so we can better control the output of the chemical reactions."

One reason intermediate chemicals are often overlooked and poorly studied is that they exist for a short time -- sometimes just a fraction of a second -- before they are consumed by a subsequent reaction.

"Probing these is a real challenge because of the fast timescales involved," Thomann said. "We are developing an ultrafast laser spectroscopy system that, in essence, allows us to take a movie of the short-lived chemical intermediates as they come and go."

The spectrograph can read the optical signatures of molecules. These act like fingerprints that her team can use to determine exactly which intermediates are present and in what concentration at any point throughout the reaction. By running repeated tests under a variety of reaction conditions, Thomann's team hopes to learn how to optimize the efficiency and selectivity of chemical reactions.

"We are building this tunable laser source with lots of different colors because not every reaction is alike," Thomann said. "With this tunable laser system, we can shine light of any color to study different chemicals."

In the case of carbon dioxide, the research could allow chemical engineers to optimize solar-powered CO2 conversion systems for a variety of different parameters.

"Every application is a bit different, and this is the kind of knowledge engineers need to meet a specific challenge," she said. "In one case, the limiting factor might be the upfront cost of building the system. In another instance, the engineer might be more interested in optimizing output. In each case, it is important to understand exactly how the reaction takes place."

Thomann said energy and green chemistry are but two of the research themes in her lab.

"We are definitely interested in materials for energy applications, particularly for those involving solar photocatalysis," Thomann said. "But energy is just one of the big challenges of our day. There are also other challenges in sensing and in health. Over time, we aim to be part of solving or helping to solve other grand challenges through the use of nanophotonics."

####

About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,920 undergraduates and 2,567 graduate students, Rice's undergraduate student-to-faculty ratio is 6.3-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 2 for "best value" among private universities by Kiplinger's Personal Finance.

Follow Rice News and Media Relations on Twitter @RiceUNews.

For more information, please click here

Contacts:
David Ruth
713-348-6327


Jade Boyd
713-348-6778

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

A copy of the NSF grant abstract is available here:

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Materials/Metamaterials/Magnetoresistance

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Environment

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

New catalyst could dramatically cut methane pollution from millions of engines: Researchers demonstrate a way to remove the potent greenhouse gas from the exhaust of engines that burn natural gas. July 21st, 2023

Billions of nanoplastics released when microwaving baby food containers: Exposure to plastic particles kills up to 75% of cultured kidney cells July 21st, 2023

Energy

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

The efficient perovskite cells with a structured anti-reflective layer – another step towards commercialization on a wider scale October 6th, 2023

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Photonics/Optics/Lasers

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Solar/Photovoltaic

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

Charged “molecular beasts” the basis for new compounds: Researchers at Leipzig University use “aggressive” fragments of molecular ions for chemical synthesis November 3rd, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project