Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Rice's Thomann wins CAREER grant to study photocatalysis: Rice lab's unique spectrometer will shed light on solar-powered CO2 reduction

 Isabell Thomann
CREDIT: Jeff Fitlow/Rice University
Isabell Thomann

CREDIT: Jeff Fitlow/Rice University

Abstract:
It's difficult to define Rice University scientist Isabell Thomann, whose research encompasses chemistry, optics, electrical engineering, energy and the environment -- just to name a few. But thanks to a prestigious CAREER Award from the National Science Foundation (NSF), Thomann's got the chance to focus her energies on a five-year quest to explore ways of using sunlight to reduce the carbon footprint of power plants.

Rice's Thomann wins CAREER grant to study photocatalysis: Rice lab's unique spectrometer will shed light on solar-powered CO2 reduction

Houston, TX | Posted on June 19th, 2014

"We are interested in improving photocatalysis, a class of processes in which we use light to drive chemical reactions," Thomann said. "This grant will focus on the reduction of carbon dioxide using sunlight, but the methods that we study in our lab can be broadly applied across many disciplines."

CAREER Awards are among the NSF's most competitive. Only about 400 are given each year across all disciplines. The awards, which include $400,000 in research funding, are given to "junior faculty who exemplify the role of teacher-scholars through outstanding research, excellent education and the integration of education and research within the context of the mission of their organizations," according to the NSF.

Thomann holds joint appointments in Rice's departments of Electrical and Computer Engineering, Chemistry, and Materials Science and NanoEngineering. One facet of her work focuses on designing and testing photocatalytic nanomaterials -- tiny bits of matter that interact with light to foster chemical reactions.

"Typically in a chemical reaction, you have a reactant, or chemical input A, that is used to produce a chemical product B," Thomann said. "It's rare that a reaction goes directly from A to B. Often there are a number of short-lived, intermediate chemicals that are produced in between. We would like to better understand what these short-lived intermediates are so we can better control the output of the chemical reactions."

One reason intermediate chemicals are often overlooked and poorly studied is that they exist for a short time -- sometimes just a fraction of a second -- before they are consumed by a subsequent reaction.

"Probing these is a real challenge because of the fast timescales involved," Thomann said. "We are developing an ultrafast laser spectroscopy system that, in essence, allows us to take a movie of the short-lived chemical intermediates as they come and go."

The spectrograph can read the optical signatures of molecules. These act like fingerprints that her team can use to determine exactly which intermediates are present and in what concentration at any point throughout the reaction. By running repeated tests under a variety of reaction conditions, Thomann's team hopes to learn how to optimize the efficiency and selectivity of chemical reactions.

"We are building this tunable laser source with lots of different colors because not every reaction is alike," Thomann said. "With this tunable laser system, we can shine light of any color to study different chemicals."

In the case of carbon dioxide, the research could allow chemical engineers to optimize solar-powered CO2 conversion systems for a variety of different parameters.

"Every application is a bit different, and this is the kind of knowledge engineers need to meet a specific challenge," she said. "In one case, the limiting factor might be the upfront cost of building the system. In another instance, the engineer might be more interested in optimizing output. In each case, it is important to understand exactly how the reaction takes place."

Thomann said energy and green chemistry are but two of the research themes in her lab.

"We are definitely interested in materials for energy applications, particularly for those involving solar photocatalysis," Thomann said. "But energy is just one of the big challenges of our day. There are also other challenges in sensing and in health. Over time, we aim to be part of solving or helping to solve other grand challenges through the use of nanophotonics."

####

About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,920 undergraduates and 2,567 graduate students, Rice's undergraduate student-to-faculty ratio is 6.3-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 2 for "best value" among private universities by Kiplinger's Personal Finance.

Follow Rice News and Media Relations on Twitter @RiceUNews.

For more information, please click here

Contacts:
David Ruth
713-348-6327


Jade Boyd
713-348-6778

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

A copy of the NSF grant abstract is available here:

Related News Press

News and information

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Govt.-Legislation/Regulation/Funding/Policy

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Materials/Metamaterials

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Alloying materials of different structures offers new tool for controlling properties June 19th, 2017

Smart materials used in ultrasound behave similar to water, Penn chemists report June 16th, 2017

Announcements

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Environment

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Can crab shells provide a 'green' solution to malaria? Study shows how a mixture of chitin and silver nanoparticles inhibits growth of mosquito larvae May 12th, 2017

NanoMONITOR shares its latest developments concerning the NanoMONITOR Software and the Monitoring stations April 21st, 2017

Wood filter removes toxic dye from water April 21st, 2017

Energy

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Cambridge Nanotherm partners with Inabata for global sales and distribution June 20th, 2017

Development of low-dimensional nanomaterials could revolutionize future technologies June 15th, 2017

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Mussels add muscle to biocompatible fibers: Rice University chemists develop hydrogel strings using compound found in sea creatures June 9th, 2017

The 2017 Winners for Generation Nano June 8th, 2017

Photonics/Optics/Lasers

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

New carbon nitride material coupled with ruthenium enhances visible-light CO2 reduction in water June 15th, 2017

Changing the color of laser light on the femtosecond time scale: How BiCoO3 achieves second harmonic generation June 14th, 2017

Learning with light: New system allows optical “deep learning”: Neural networks could be implemented more quickly using new photonic technology June 12th, 2017

Solar/Photovoltaic

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Development of low-dimensional nanomaterials could revolutionize future technologies June 15th, 2017

In a project funded by the Austrian Science Fund FWF, the physicist Serdar Sarıçiftçi investigates possible uses in electronics of the semiconductor properties of indigo pigment June 14th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project