Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > New quantum mechanism to trigger the emission of tunable light at terahertz frequencies

This is an optoelectronic device formed of multiple quantum wells, whose design is optimised to maximise the dipole and thus its efficiency, emitting terahertz light.

Credit: University of Southampton
This is an optoelectronic device formed of multiple quantum wells, whose design is optimised to maximise the dipole and thus its efficiency, emitting terahertz light.

Credit: University of Southampton

Abstract:
Scientists have found that two-dimensional (2D) nanostructures with asymmetric design enable a new quantum mechanism, triggering the emission of tunable light at terahertz frequencies—with unprecedented efficiency.

New quantum mechanism to trigger the emission of tunable light at terahertz frequencies

Southampton, UK | Posted on June 18th, 2014

The researchers, from the University of Southampton and Imperial College London, found that quantum wells, 2D nanostructures formed of several layers of semi-conductor alloys placed on top of each other like a sandwich, can enhance light emission in a technological challenging spectral range.

It is hoped that the findings will have an impact on photonic and optoelectronic devices across a broad range of applications, including harmless medical imaging and security scanning.

Electrons are trapped in the structure and this confinement can be exploited to enhance their capacity to interact with light at given frequencies much lower than the laser frequency at which they are excited: the system emits light by interacting with "vacuum fluctuations" that permeate space, according to quantum theory.

Nathan Shammah, from the University's Quantum Light and Matter (QLM) group and co-author of the study says: "As the 2D nanostructures can be manufactured with an asymmetric design, this allows light to interact with trapped electrons in a way that is not otherwise allowed. This interaction process, leading to the emission of light at lower frequencies, has not been observed in atoms because those are very symmetrical systems and symmetry rules prevent the transitions that trigger this light emission from happening."

In the paper, which is published in Physical Review B, the researchers predict that by shining light on a 2D asymmetric nanostructure with a laser that is tuned at resonance with the electronic transitions that can occur in the nanostructure, in addition to the scattered laser light, this 2D device would emit light at other frequencies, which can be tuned simply by changing the laser power.

Nathan, who co-authored the paper with Dr Simone De Liberato, from the QLM group, and Professor Chris Phillips from Imperial College London, adds: "Due to the large oscillating dipole and high density of electrons that characterise these "artificial atoms" formed of asymmetric 2D structures, the control of light-matter coupling can be greatly enhanced, triggering spontaneous light emission, similar to what occurs in LEDs lamps.

"This new mechanism is perfectly suited for the terahertz frequency range, which spans from above the current wi-fi bandwidth to below the visible light spectrum, where the lack of practical light emitters constitutes a serious technological gap."

The high efficiency shown by the simulations suggests that this theoretical result could be exploited in the near future for a broad range of optoelectronic applications—from harmless medical imaging and security scanners, to short-range, ultra-fast wireless communication.

####

For more information, please click here

Contacts:
Glenn Harris

44-023-805-93212

Copyright © University of Southampton

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Dr Barbara Armbruster promoted to Worldwide Sales and Marketing Director for XEI Scientific September 27th, 2016

Fighting cancer with sticky nanoparticles September 27th, 2016

Gold nanoparticles conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2 mediated pathway in breast cancer September 27th, 2016

UNAM develops successful nano edible coating which increases life food September 27th, 2016

Law enforcement/Anti-Counterfeiting/Security/Loss prevention

Nanotech Grants Options September 22nd, 2016

Leti and Oberthur Technologies Partner to Explore New Solutions in Fast-growing Digital Era September 12th, 2016

Imaging

Oxford Instruments is ‘Bringing the Nanoworld Together’ in India once again - 22 - 23 November 2016 | IISc Bangalore September 21st, 2016

Bruker Introduces Complete Commercial AFM-Based SECM Solution: PeakForce SECM Mode Enables Previously Unobtainable Electrochemical Information September 20th, 2016

Iran to hold intl. school on application of nanomaterials in medicine September 20th, 2016

Oxford Instruments Asylum Research Announces New SurfRider Econo Board Probes for Routine AFM Measurements September 19th, 2016

Wireless/telecommunications/RF/Antennas/Microwaves

Containing our 'electromagnetic pollution': MXene can protect mobile devices from electromagnetic interference September 13th, 2016

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Silicon nanoparticles trained to juggle light: Research findings prove the capabilities of silicon nanoparticles for flexible data processing in optical communication systems August 25th, 2016

Nanomedicine

Fighting cancer with sticky nanoparticles September 27th, 2016

Gold nanoparticles conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2 mediated pathway in breast cancer September 27th, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

BBI Solutions launches innovative conjugate blocking technology that enhances signal intensity for lateral flow immunoassays September 20th, 2016

Discoveries

Fighting cancer with sticky nanoparticles September 27th, 2016

Gold nanoparticles conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2 mediated pathway in breast cancer September 27th, 2016

UNAM develops successful nano edible coating which increases life food September 27th, 2016

Crystalline Fault Lines Provide Pathway for Solar Cell Current: New tomographic AFM imaging technique reveals that microstructural defects, generally thought to be detrimental, actually improve conductivity in cadmium telluride solar cells September 26th, 2016

Announcements

Dr Barbara Armbruster promoted to Worldwide Sales and Marketing Director for XEI Scientific September 27th, 2016

Fighting cancer with sticky nanoparticles September 27th, 2016

Gold nanoparticles conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2 mediated pathway in breast cancer September 27th, 2016

UNAM develops successful nano edible coating which increases life food September 27th, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Fighting cancer with sticky nanoparticles September 27th, 2016

Gold nanoparticles conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2 mediated pathway in breast cancer September 27th, 2016

Crystalline Fault Lines Provide Pathway for Solar Cell Current: New tomographic AFM imaging technique reveals that microstructural defects, generally thought to be detrimental, actually improve conductivity in cadmium telluride solar cells September 26th, 2016

Researchers at the Catalan Institute of Nanoscience and Nanotechnology show that bending semiconductors generates electricity September 26th, 2016

Tools

Dr Barbara Armbruster promoted to Worldwide Sales and Marketing Director for XEI Scientific September 27th, 2016

Oxford Instruments is ‘Bringing the Nanoworld Together’ in India once again - 22 - 23 November 2016 | IISc Bangalore September 21st, 2016

Bruker Introduces Complete Commercial AFM-Based SECM Solution: PeakForce SECM Mode Enables Previously Unobtainable Electrochemical Information September 20th, 2016

Oxford Instruments Asylum Research Announces New SurfRider Econo Board Probes for Routine AFM Measurements September 19th, 2016

Photonics/Optics/Lasers

Mexican scientist in the Netherlands seeks to achieve data transmission ... speed of light September 20th, 2016

Towards Stable Propagation of Light in Nano-Photonic Fibers September 20th, 2016

PHENOMEN is a FET-Open Research Project aiming to lay the foundations a new information technology September 19th, 2016

NIST Patents Single-Photon Detector for Potential Encryption and Sensing Apps September 16th, 2016

Quantum nanoscience

Chains of nanogold – forged with atomic precision September 23rd, 2016

Notre Dame researchers find transition point in semiconductor nanomaterials September 6th, 2016

NREL Discovery Creates Future Opportunity in Quantum Computing: Research into perovskites looks beyond material’s usage for efficient solar cells September 1st, 2016

Light and matter merge in quantum coupling: Rice University physicists probe photon-electron interactions in vacuum cavity experiments August 24th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic