Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > Ultra-thin wires for quantum computing: Carefully fabricating nanofibers by heating and pulling may make for highly-efficient, optics-based, low-power atom traps

This image depicts light propagating through an optical nanofiber during the pulling process with a SEM image of the 536 nanometer diameter waist.

Credit: J. E. Hoffman and E. Edwards / JQI at UMD
This image depicts light propagating through an optical nanofiber during the pulling process with a SEM image of the 536 nanometer diameter waist.

Credit: J. E. Hoffman and E. Edwards / JQI at UMD

Abstract:
Take a fine strand of silica fiber, attach it at each end to a slow-turning motor, gently torture it over an unflickering flame until it just about reaches its melting point and then pull it apart. The middle will thin out like a piece of taffy until it is less than half a micron across -- about 200 times thinner than a human hair.

Ultra-thin wires for quantum computing: Carefully fabricating nanofibers by heating and pulling may make for highly-efficient, optics-based, low-power atom traps

Washington, DC | Posted on June 17th, 2014

That, according to researchers at the Joint Quantum Institute at the University of Maryland, is how you fabricate ultrahigh transmission optical nanofibers, a potential component for future quantum information devices, which they describe in AIP Publishing's journal AIP Advances.

Quantum computers promise enormous power, but are notoriously tricky to build. To encode information in qubits, the fundamental units of a quantum computer, the bits must be held in a precarious position called a superposition of states. In this fragile condition the bits exist in all of their possible configurations at the same time, meaning they can perform multiple parallel calculations.

The tendency of qubits to lose their superposition state too quickly, a phenomenon known as decoherence, is a major obstacle to the further development of quantum computers and any device dependent on superpositions. To address this challenge, researchers at the Joint Quantum Institute proposed a hybrid quantum processor that uses trapped atoms as the memory and superconducting qubits as the processor, as atoms demonstrate relatively long superposition survival times and superconducting qubits perform operations quickly.

"The idea is that we can get the best of both worlds," said Jonathan Hoffman, a graduate student in the Joint Quantum Institute who works in the lab of principal investigators Steven Rolston and Luis Orozco. However, a problem is that superconductors don't like high optical power or magnetic fields and most atomic traps use both, Hoffman said.

This is where the optical nanofibers come in: The Joint Quantum Institute team realized that nanofibers could create optics-based, low-power atom traps that would "play nice" with superconductors. Because the diameter of the fibers is so minute -- 530 nanometers, less than the wavelength of light used to trap atoms -- some of the light leaks outside of the fiber as a so-called evanescent wave, which can be used to trap atoms a few hundred nanometers from the fiber surface.

Hoffman and his colleagues have worked on optical nanofiber atom traps for the past few years. Their AIP Advances paper describes a new procedure they developed that maximizes the efficiency of the traps through careful and precise fabrication methods.

The group's procedure, which yields an improvement of two orders of magnitude less transmission loss than previous work, focuses on intensive preparation and cleaning of the pre-pulling environment the nanofibers are created in.

In the fabrication process, the fiber is brushed through the flame to prevent the formation of air currents, which can cause inconsistencies in diameter to arise, as it is pulled apart and tapered down. The flame source is a mixture of hydrogen and oxygen gas in a precise two-to-one ratio, to ensure that water vapor is the only byproduct. The motors are controlled by an algorithm based on the existing work of a group in Vienna, which calculates the trajectories of the motors to produce a fiber of the desired length and profile.

Previous pulling methods, such as carbon dioxide lasing and chemical etching, were limited by the laser's insufficient diameter and by a lesser degree of control over tapering length, respectively.

Future work includes interfacing the trapped atoms with the superconducting circuits held at 10 mKelvin in a dilution refrigerator, as well as guiding more complicated optical field patterns through the fiber (higher-order modes) and using these to trap atoms.

####

About American Institute of Physics
AIP Advances is a fully open access, online-only, community-led journal. It covers all areas of applied physical science. With its advanced web 2.0 functionality, the journal puts relevant content and discussion tools in the hands of the community to shape the direction of the physical sciences. See: aipadvances.aip.org

For more information, please click here

Contacts:
Jason Socrates Bardi

240-535-4954

Copyright © American Institute of Physics

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The article, "Ultrahigh transmission optical nanofibers," is authored by J.E. Hoffman, S. Ravets, J.A. Grover, P. Solano, P.R. Kordell, J.D. Wong-Campos, L.A. Orozco and S.L. Rolston. It will be published in AIP Advances on June 17, 2014 (DOI: . After that date, it may be accessed at:

Related News Press

News and information

Pixel-array quantum cascade detector paves the way for portable thermal imaging devices: Research team from TU-Wien Center for Micro- and Nanostructures have developed a new 'cooler' sensing instrument thereby increasing energy-efficiency and enhancing mobility for diagnostic tes July 28th, 2016

Dirty to drinkable: Engineers develop novel hybrid nanomaterials to transform water July 28th, 2016

Thomas Swan and NGI announce unique partnership July 28th, 2016

Penn team uses nanoparticles to break up plaque and prevent cavities July 28th, 2016

Superconductivity

Russian physicists discover a new approach for building quantum computers: Physicists find a way of 'bundling together' multiple elements of a quantum computer July 24th, 2016

New superconducting coil improves MRI performance: UH-led research offers higher resolution, shorter scan time July 23rd, 2016

RMIT researchers make leap in measuring quantum states July 21st, 2016

Exploring superconducting properties of 3-D printed parts: Australian researchers use 3-D printing to create a resonant microwave cavity via an aluminum-silicon alloy that boasts superconductivity when cooled below the critical temperature of aluminum July 20th, 2016

Oxford Instruments and Dresden High Magnetic Field Laboratory collaborate to develop HTS magnet technology components for high field superconducting magnet systems June 29th, 2016

Wireless/telecommunications/RF/Antennas/Microwaves

Scientists move 1 step closer to creating an invisibility cloak July 15th, 2016

A little impurity makes nanolasers shine: ANU media release July 6th, 2016

Superheroes are real: Ultrasensitive nonlinear metamaterials for data transfer June 25th, 2016

Discoveries

Pixel-array quantum cascade detector paves the way for portable thermal imaging devices: Research team from TU-Wien Center for Micro- and Nanostructures have developed a new 'cooler' sensing instrument thereby increasing energy-efficiency and enhancing mobility for diagnostic tes July 28th, 2016

Dirty to drinkable: Engineers develop novel hybrid nanomaterials to transform water July 28th, 2016

Penn team uses nanoparticles to break up plaque and prevent cavities July 28th, 2016

Beating the heat a challenge at the nanoscale: Rice University scientists detect thermal boundary that hinders ultracold experiments July 28th, 2016

Materials/Metamaterials

WSU researchers 'watch' crystal structure change in real time: Breakthrough made possible by new Argonne facility July 27th, 2016

New lithium-oxygen battery greatly improves energy efficiency, longevity: New chemistry could overcome key drawbacks of lithium-air batteries July 26th, 2016

Ultra-flat circuits will have unique properties: Rice University lab studies 2-D hybrids to see how they differ from common electronics July 25th, 2016

Attosecond physics: Mapping electromagnetic waveforms July 25th, 2016

Announcements

Pixel-array quantum cascade detector paves the way for portable thermal imaging devices: Research team from TU-Wien Center for Micro- and Nanostructures have developed a new 'cooler' sensing instrument thereby increasing energy-efficiency and enhancing mobility for diagnostic tes July 28th, 2016

Dirty to drinkable: Engineers develop novel hybrid nanomaterials to transform water July 28th, 2016

Thomas Swan and NGI announce unique partnership July 28th, 2016

Penn team uses nanoparticles to break up plaque and prevent cavities July 28th, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Dirty to drinkable: Engineers develop novel hybrid nanomaterials to transform water July 28th, 2016

Penn team uses nanoparticles to break up plaque and prevent cavities July 28th, 2016

Beating the heat a challenge at the nanoscale: Rice University scientists detect thermal boundary that hinders ultracold experiments July 28th, 2016

WSU researchers 'watch' crystal structure change in real time: Breakthrough made possible by new Argonne facility July 27th, 2016

Photonics/Optics/Lasers

Beating the heat a challenge at the nanoscale: Rice University scientists detect thermal boundary that hinders ultracold experiments July 28th, 2016

Attosecond physics: Mapping electromagnetic waveforms July 25th, 2016

RMIT researchers make leap in measuring quantum states July 21st, 2016

The birth of quantum holography: Making holograms of single light particles! July 21st, 2016

Quantum nanoscience

Quantum drag:University of Iowa physicist says current in one iron magnetic sheet can create quantized spin waves in another, separate sheet July 22nd, 2016

A new spin on reality July 15th, 2016

Physicists couple distant nuclear spins using a single electron: For the first time, researchers at the University of Basel have coupled the nuclear spins of distant atoms using just a single electron July 12th, 2016

Quantum technologies to revolutionize 21st century: Nobel Laureates to discuss impacts at 66th Lindau Meeting July 5th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic