Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > New class of nanoparticle brings cheaper, lighter solar cells outdoors

Abstract:
Think those flat, glassy solar panels on your neighbour's roof are the pinnacle of solar technology? Think again.

Researchers in the University of Toronto's Edward S. Rogers Sr. Department of Electrical & Computer Engineering have designed and tested a new class of solar-sensitive nanoparticle that outshines the current state of the art employing this new class of technology.

New class of nanoparticle brings cheaper, lighter solar cells outdoors

Toronto, Canada | Posted on June 9th, 2014

This new form of solid, stable light-sensitive nanoparticles, called colloidal quantum dots, could lead to cheaper and more flexible solar cells, as well as better gas sensors, infrared lasers, infrared light emitting diodes and more. The work, led by post-doctoral researcher Zhijun Ning and Professor Ted Sargent, was published this week in Nature Materials.

Collecting sunlight using these tiny colloidal quantum dots depends on two types of semiconductors: n-type, which are rich in electrons; and p-type, which are poor in electrons. The problem? When exposed to the air, n-type materials bind to oxygen atoms, give up their electrons, and turn into p-type. Ning and colleagues modelled and demonstrated a new colloidal quantum dot n-type material that does not bind oxygen when exposed to air.

Maintaining stable n- and p-type layers simultaneously not only boosts the efficiency of light absorption, it opens up a world of new optoelectronic devices that capitalize on the best properties of both light and electricity. For the average person, this means more sophisticated weather satellites, remote controllers, satellite communication, or pollution detectors.

"This is a material innovation, that's the first part, and with this new material we can build new device structures," said Ning. "Iodide is almost a perfect ligand for these quantum solar cells with both high efficiency and air stability—no one has shown that before."

Ning's new hybrid n- and p-type material achieved solar power conversion efficiency up to eight per cent—among the best results reported to date.

But improved performance is just a start for this new quantum-dot-based solar cell architecture. The powerful little dots could be mixed into inks and painted or printed onto thin, flexible surfaces, such as roofing shingles, dramatically lowering the cost and accessibility of solar power for millions of people.

"The field of colloidal quantum dot photovoltaics requires continued improvement in absolute performance, or power conversion efficiency," said Sargent. "The field has moved fast, and keeps moving fast, but we need to work toward bringing performance to commercially compelling levels."

This research was conducted in collaboration with Dalhousie University, King Abdullah University of Science and Technology and Huazhong University of Science and Technology.

####

For more information, please click here

Contacts:
Dominic Ali

416-978-6974

Marit Mitchell
Senior Communications Officer
The Edward S. Rogers Sr. Department of Electrical & Computer Engineering
University of Toronto
416-978-7997

Copyright © University of Toronto

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

NUS ‘smart’ textiles boost connectivity between wearable sensors by 1,000 times: Metamaterials are incorporated into conventional clothing to dramatically improve signal strength between electronic devices, allowing for new applications July 15th, 2019

Dresden physicists use nanostructures to free photons for highly efficient white OLEDs: Trapped light particles July 12th, 2019

Nanotechnology delivers hepatitis B vaccine: X-ray imaging shows that nanostructured silica acts as a protective vehicle to deliver intact antigen to the intestine so that it can trigger an immune response. The material can give rise to a polyvaccine against six diseases July 12th, 2019

Strange warping geometry helps to push scientific boundaries July 12th, 2019

Thin films

A new way of making complex structures in thin films: Self-assembling materials can form patterns that might be useful in optical devices July 5th, 2019

Small currents for big gains in spintronics: A new low-power magnetic switching component could aid spintronic devices June 14th, 2019

New interaction between thin film magnets discovered: Physicists of Johannes Gutenberg University Mainz lay the foundations for new three-dimensional spin structures June 7th, 2019

Quantum information gets a boost from thin-film breakthrough: Method opens new path to all-optical quantum computers, other technologies May 31st, 2019

Discoveries

NUS ‘smart’ textiles boost connectivity between wearable sensors by 1,000 times: Metamaterials are incorporated into conventional clothing to dramatically improve signal strength between electronic devices, allowing for new applications July 15th, 2019

What happens when you explode a chemical bond? Attosecond laser technique yields movies of chemical bond dissociation July 12th, 2019

Nanotechnology delivers hepatitis B vaccine: X-ray imaging shows that nanostructured silica acts as a protective vehicle to deliver intact antigen to the intestine so that it can trigger an immune response. The material can give rise to a polyvaccine against six diseases July 12th, 2019

Strange warping geometry helps to push scientific boundaries July 12th, 2019

Announcements

NUS ‘smart’ textiles boost connectivity between wearable sensors by 1,000 times: Metamaterials are incorporated into conventional clothing to dramatically improve signal strength between electronic devices, allowing for new applications July 15th, 2019

Dresden physicists use nanostructures to free photons for highly efficient white OLEDs: Trapped light particles July 12th, 2019

Nanotechnology delivers hepatitis B vaccine: X-ray imaging shows that nanostructured silica acts as a protective vehicle to deliver intact antigen to the intestine so that it can trigger an immune response. The material can give rise to a polyvaccine against six diseases July 12th, 2019

Strange warping geometry helps to push scientific boundaries July 12th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

NUS ‘smart’ textiles boost connectivity between wearable sensors by 1,000 times: Metamaterials are incorporated into conventional clothing to dramatically improve signal strength between electronic devices, allowing for new applications July 15th, 2019

Dresden physicists use nanostructures to free photons for highly efficient white OLEDs: Trapped light particles July 12th, 2019

An 'EpiPen' for spinal cord injuries July 12th, 2019

Strange warping geometry helps to push scientific boundaries July 12th, 2019

Energy

Experiments show dramatic increase in solar cell output: Method for collecting two electrons from each photon could break through theoretical solar-cell efficiency limit July 5th, 2019

Black (nano)gold combat climate change July 5th, 2019

Researchers unveil how soft materials react to deformation at molecular level June 24th, 2019

Next-gen solar cells spin in new direction: Phosphorene shows efficiency promise June 21st, 2019

Aerospace/Space

Better microring sensors for optical applications May 10th, 2019

Sculpting Super-Fast Light Pulses: NIST Nanopillars Shape Light Precisely for Practical Applications May 3rd, 2019

New hybrid energy method could fuel the future of rockets, spacecraft for exploration: Nontraditional route shown to increase performance, burn rate April 9th, 2019

VP Pence Announces Humans on Moon by 2024 April 2nd, 2019

Quantum Dots/Rods

Engineers revolutionize molecular microscopy: Single molecules measure electrical potentials July 12th, 2019

Quantum rebar: Quantum dots enhance stability of solar-harvesting perovskite crystals: Researchers demonstrate that perovskite crystals and quantum dots working together can increase stability of solar materials May 24th, 2019

Coal could yield treatment for traumatic injuries: Rice, Texas A&M, UTHealth scientists discover coal-derived ‘dots’ are effective antioxidant April 25th, 2019

2D gold quantum dots are atomically tunable with nanotubes April 11th, 2019

Photonics/Optics/Lasers

What happens when you explode a chemical bond? Attosecond laser technique yields movies of chemical bond dissociation July 12th, 2019

Strange warping geometry helps to push scientific boundaries July 12th, 2019

A new way of making complex structures in thin films: Self-assembling materials can form patterns that might be useful in optical devices July 5th, 2019

'Tsunami' on a silicon chip: a world first for light waves: Sydney-Singapore team manipulates soliton photonic waves on a silicon chip July 5th, 2019

Research partnerships

The best of both worlds: how to solve real problems on modern quantum computers July 12th, 2019

Sheaths drive powerful new artificial muscles July 11th, 2019

Activity of fuel cell catalysts doubled: Modelling leads to the optimum size for platinum fuel cell catalysts July 5th, 2019

Spontaneous synchronisation achieved at the nanoscale July 4th, 2019

Solar/Photovoltaic

Experiments show dramatic increase in solar cell output: Method for collecting two electrons from each photon could break through theoretical solar-cell efficiency limit July 5th, 2019

Black (nano)gold combat climate change July 5th, 2019

Next-gen solar cells spin in new direction: Phosphorene shows efficiency promise June 21st, 2019

'Hot spots' increase efficiency of solar desalination: Rice University engineers boost output of solar desalination system by 50% June 19th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project