Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Evolution of a Bimetallic Nanocatalyst

TEM image of platinum/cobalt bimetallic nanoparticle catalyst in action shows that during the oxidation reaction, cobalt atoms migrate to the surface of the particle, forming a cobalt oxide epitaxial film, like water on oil.
TEM image of platinum/cobalt bimetallic nanoparticle catalyst in action shows that during the oxidation reaction, cobalt atoms migrate to the surface of the particle, forming a cobalt oxide epitaxial film, like water on oil.

Abstract:
Atomic-scale snapshots of a bimetallic nanoparticle catalyst in action have provided insights that could help improve the industrial process by which fuels and chemicals are synthesized from natural gas, coal or plant biomass. A multi-national lab collaboration led by researchers with the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab) has taken the most detailed look ever at the evolution of platinum/cobalt bimetallic nanoparticles during reactions in oxygen and hydrogen gases.

Evolution of a Bimetallic Nanocatalyst

Berkeley, CA | Posted on June 6th, 2014

"Using in situ aberration-corrected transmission electron microscopy (TEM), we found that during the oxidation reaction, cobalt atoms migrate to the nanoparticle surface, forming a cobalt oxide epitaxial film, like water on oil," says Haimei Zheng, a staff scientist in Berkeley Lab's Materials Sciences Division who led this study. "During the hydrogen reduction reaction, cobalt atoms migrate back into the bulk, leaving a monolayer of platinum on the surface. This atomic information provides an important reference point for designing and engineering better bimetallic catalysts in the future."

Zheng, a 2011 recipient of a DOE Office of Science Early Career Award, is the corresponding author of a paper describing this research in the journal NANO Letters entitled "Revealing the Atomic Restructuring of Pt-Co Nanoparticles." Co-authors at Berkeley are Huolin Xin, Selim Alayoglu, Runzhe Tao, Lin-Wang Wang, Miquel Salmeron and Gabor Somorjai. Other co-authors are Chong-Min Wang and Libor Kovarik, of the Pacific Northwest National Laboratory (PNNL), Eric Stach of Brookhaven National Laboratory (BNL), and Arda Genc of the FEI Company in Oregon.

Bimetallic catalysts are drawing considerable attention from the chemical industry these days because in many cases they offer superior performances to their monometallic counterparts. There is also the possibility of tuning their catalytic performances to meet specific needs. A bimetallic catalyst of particular interest entails the pairing of platinum, the gold standard of monometallic catalysts, with cobalt, a lesser catalyst but one that is dramatically cheaper than platinum. The platinum/cobalt catalyst is not only considered a model system for the study of other bimetallic nanocatalysts, it is also an excellent promoter of the widely used Fischer-Tropsch process, in which mixtures of hydrogen and carbon monoxide are converted into long-chain carbons for use as fuels or in low-temperature fuel cells.

"While there have been many studies on platinum/cobalt and other bimetallic catalysts, information on how reactions proceed atomically and what the morphology looks like has been missing," Zheng says. "To acquire this information it was necessary to map the atomic structures in reactive environments in situ, which we did using specially equipped TEMs."

The in situ environmental TEM experiments were carried out at both the Environmental Molecular Sciences Laboratory, which is located at PNNL, and at BNL's Center for Functional Nanomaterials. Ex situ aberration-corrected TEM imaging was done at Berkeley Lab's National Center for Electron Microscopy using TEAM 0.5, the world's most powerful TEM.

"This work is an excellent example of collaborative team-work among multiple institutes," Zheng says. "Having access to such high-end resources and being able to form such close team collaborations strengthens our ability to tackle challenging scientific problems."

The in situ aberration corrected TEM studies of Zheng and her colleagues revealed that because of a size mismatch between the lattices of the cobalt oxide epitaxial film and the platinum surface, the cobalt oxide lattice is compressively strained at the interface to fit on the platinum lattice. As the strain energy relaxes, the cobalt oxide film starts breaking up to form distinct molecular islands on the platinum surface. This reduces the effective reaction surface area per volume and creates catalytic voids, both of which impact overall catalytic performance.

"By taking this segregation of the platinum and cobalt atoms into consideration, the interfacial strain that arises during oxidation can be predicted," Zheng says. "We can then design nanoparticle catalysts to ensure that during reactions the material with higher catalytic performance will be on surface of the nanoparticles."

Zheng adds that the ability to observe atomic scale details of the evolution of the structure of nanoparticles in their reactive environments not only opens the way to a deeper understanding of bimetallic nanoparticle catalysis, it also allows for the study of a wider variety of nanoparticle systems where reaction pathways remain elusive.

This research was supported by the DOE Office of Science. It made use of the resources at the Environmental Molecular Sciences Laboratory, the Center for Functional Nanomaterials, and the National Center for Electron Microscope, user facilities supported by DOE's Office of Science.

####

About DOE/Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory addresses the world’s most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab’s scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy’s Office of Science. For more, visit www.lbl.gov.

The U.S. Department of Energy’s Office of Science, the single largest supporter of basic research in the physical sciences in the United States, is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

For more information, please click here

Contacts:
Lynn Yarris

510-486-5375

Copyright © DOE/Lawrence Berkeley National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

For more information about the research of Haimei Zheng go here:

For more information on Berkeley Lab’s National Center for Electron Microscopy go here:

For more information about the Environmental Molecular Sciences Laboratory go here:

For more information about BNL’s Center for Functional Nanoparticles go here:

Related News Press

News and information

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Nanometrics to Participate in the 6th Annual NYC Investor Summit 2017 November 16th, 2017

Nanometrics Announces $50 Million Share Repurchase Program November 15th, 2017

Imaging

The stacked color sensor: True colors meet minimization November 16th, 2017

Park Systems Announces the Grand Opening of the Park NanoScience Center at SUNY Polytechnic Institute November 3rd, 2017

Chemistry

Dendritic fibrous nanosilica: all-in-one nanomaterial for energy, environment and health November 4th, 2017

Researchers greenlight gas detection at room temperature October 26th, 2017

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Laboratories

Ames Laboratory, UConn discover superconductor with bounce October 25th, 2017

Nanotube fiber antennas as capable as copper: Rice University researchers show their flexible fibers work well but weigh much less October 23rd, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Govt.-Legislation/Regulation/Funding/Policy

EC Project Aims at Creating and Commercializing Cyber-Physical-System Solutions November 14th, 2017

Nanobiotix presented new clinical and pre-clinical data confirming NBTXR3’s significant potential role in Immuno-Oncology at SITC Annual Meeting November 14th, 2017

Leti Joins DARPA-Funded Project to Develop Implantable Device for Restoring Vision November 9th, 2017

Nanoshells could deliver more chemo with fewer side effects: In vitro study verifies method for remotely triggering release of cancer drugs November 8th, 2017

Discoveries

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Counterfeits and product piracy can be prevented by security features, such as printed 3-D microstructures: Forgeries and product piracy are detrimental to society and industry -- 3-D microstructures can increase security -- KIT researchers develop innovative fluorescent 3-D stru November 15th, 2017

Materials/Metamaterials

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

A new way to mix oil and water: Condensation-based method developed at MIT could create stable nanoscale emulsions November 8th, 2017

TUBALL nanotube-based concentrates recognised as the most innovative raw material for composites by JEC Group November 7th, 2017

Announcements

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Nanometrics to Participate in the 6th Annual NYC Investor Summit 2017 November 16th, 2017

Energy

Inorganic-organic halide perovskites for new photovoltaic technology November 6th, 2017

Dendritic fibrous nanosilica: all-in-one nanomaterial for energy, environment and health November 4th, 2017

New nanomaterial can extract hydrogen fuel from seawater: Hybrid material converts more sunlight and can weather seawater's harsh conditions October 4th, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

Fuel Cells

Hydrogen power moves a step closer: Physicists are developing methods of creating renewable fuel from water using quantum technology September 15th, 2017

More durable, less expensive fuel cells: University of Delaware researchers have developed a new technology that could speed up the commercialization of fuel cell vehicles September 5th, 2017

Engineers pioneer platinum shell formation process – and achieve first-ever observation August 11th, 2017

Argonne National Laboratory’s Continuous ALD Technology Licensed Exclusively to Forge Nano July 7th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project