Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > 2D Transistors Promise a Faster Electronics Future Berkeley Lab Researchers Create the First Fully 2D Field Effect Transistors

Berkeley Lab researchers fabricated the first fully 2D field-effect transistor from layers of molybdenum disulfide, hexagonal boron nitride and graphene held together by van der Waals bonding.
Berkeley Lab researchers fabricated the first fully 2D field-effect transistor from layers of molybdenum disulfide, hexagonal boron nitride and graphene held together by van der Waals bonding.

Abstract:
Faster electronic device architectures are in the offing with the unveiling of the world's first fully two-dimensional field-effect transistor (FET) by researchers with the Lawrence Berkeley National Laboratory (Berkeley Lab). Unlike conventional FETs made from silicon, these 2D FETs suffer no performance drop-off under high voltages and provide high electron mobility, even when scaled to a monolayer in thickness.

2D Transistors Promise a Faster Electronics Future Berkeley Lab Researchers Create the First Fully 2D Field Effect Transistors

Berkeley, CA | Posted on June 3rd, 2014

Ali Javey, a faculty scientist in Berkeley Lab's Materials Sciences Division and a UC Berkeley professor of electrical engineering and computer science, led this research in which 2D heterostructures were fabricated from layers of a transition metal dichalcogenide, hexagonal boron nitride and graphene stacked via van der Waals interactions.

"Our work represents an important stepping stone towards the realization of a new class of electronic devices in which interfaces based on van der Waals interactions rather than covalent bonding provide an unprecedented degree of control in material engineering and device exploration," Javey says. "The results demonstrate the promise of using an all-layered material system for future electronic applications."

Javey is the corresponding author of a paper describing this research in ACS Nano titled "Field-Effect Transistors Built from All Two-Dimensional Material Components". Co-authors are Tania Roy, Mahmut Tosun, Jeong Seuk Kang, Angada Sachid, Sujay Desai, Mark Hettick and Chenming Hu.

FETs, so-called because an electrical signal sent through one electrode creates an electrical current throughout the device, are one of the pillars of the electronics industry, ubiquitous to computers, cell phones, tablets, pads and virtually every other widely used electronic device. All FETs are comprised of gate, source and drain electrodes connected by a channel through which a charge-carrier - either electrons or holes - flow. Mismatches between the crystal structure and atomic lattices of these individual components result in rough surfaces - often with dangling chemical bonds - that degrade charge-carrier mobility, especially at high electrical fields.

"In constructing our 2D FETs so that each component is made from layered materials with van der Waals interfaces, we provide a unique device structure in which the thickness of each component is well-defined without any surface roughness, not even at the atomic level," Javey says. "The van der Waals bonding of the interfaces and the use of a multi-step transfer process present a platform for making complex devices based on crystalline layers without the constraints of lattice parameters that often limit the growth and performance of conventional heterojunction materials."

Javey and his team fabricated their 2D FETs using the transition metal dichalcogenide molybdenum disulfide as the electron-carrying channel, hexagonal boron nitride as the gate insulator, and graphene as the source, drain and gate electrodes. All of these constituent materials are single crystals held together by van der Waals bonding.

For the 2D FETs produced in this study, mechanical exfoliation was used to create the layered components. In the future, Javey and his team will look into growing these heterogeneous layers directly on a substrate. They will also look to scale down the thickness of individual components to a monolayer and the lengths of the channels to molecular-scale dimensions.

This research was funded by the U.S. Department of Energy's Office of Science.

####

For more information, please click here

Contacts:
Lynn Yarris

510-486-5375

Copyright © DOE/Lawrence Berkeley National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

For more about the research of Ali Javey and his group go here:

Download article:

Related News Press

Graphene

Twisted graphene chills out: When two sheets of graphene are stacked in a special way, it is possible to cool down the graphene with a laser instead of heating it up, University of Manchester researchers have shown September 22nd, 2014

New research points to graphene as a flexible, low-cost touchscreen solution September 19th, 2014

Biosensors Get a Boost from Graphene Partnership: $5 Million Investment Supports Dozens of Jobs and Development of 300mm Fabrication Process and Wafer Transfer Facility September 18th, 2014

Carbon Sciences Developing Breakthrough Technology to Mass-Produce Graphene -- the New Miracle Material: Company Enters Into an Agreement With the University of California, Santa Barbara (UCSB) to Fund the Further Development of a New Graphene Process September 16th, 2014

Laboratories

Elusive Quantum Transformations Found Near Absolute Zero: Brookhaven Lab and Stony Brook University researchers measured the quantum fluctuations behind a novel magnetic material's ultra-cold ferromagnetic phase transition September 15th, 2014

'Squid skin' metamaterials project yields vivid color display: Rice lab creates RGB color display technology with aluminum nanorods September 15th, 2014

Berkeley Lab Licenses Boron Nitride Nanotube Technology: New material has unique mechanical and electronic properties September 13th, 2014

Advanced Light Source Sets Microscopy Record| Berkeley Lab Researchers Achieve Highest Resolution Ever with X-ray Microscopy September 11th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Engineered proteins stick like glue even in water: New adhesives based on mussel proteins could be useful for naval or medical applications September 22nd, 2014

Smallest possible diamonds form ultra-thin nanothreads: Diamond nanothreads are likely to have extraordinary properties, including strength and stiffness greater than that of today's strongest nanotubes and polymers September 22nd, 2014

Engineers show light can play seesaw at the nanoscale: Discovery is another step toward faster and more energy-efficient optical devices for computation and communication September 22nd, 2014

New chip promising for tumor-targeting research September 22nd, 2014

Chip Technology

Twisted graphene chills out: When two sheets of graphene are stacked in a special way, it is possible to cool down the graphene with a laser instead of heating it up, University of Manchester researchers have shown September 22nd, 2014

SouthWest NanoTechnologies (SWeNT) Receives NIST Small Business Innovation Research (SBIR) Phase 1 Award to Produce Greater than 99% Semiconducting Single-Wall Carbon Nanotubes September 19th, 2014

Toward optical chips: A promising light source for optoelectronic chips can be tuned to different frequencies September 19th, 2014

IEEE International Electron Devices Meeting To Celebrate 60th Anniversary as The Leading Technical Conference for Advanced Semiconductor Devices September 18th, 2014

Discoveries

Smallest possible diamonds form ultra-thin nanothreads: Diamond nanothreads are likely to have extraordinary properties, including strength and stiffness greater than that of today's strongest nanotubes and polymers September 22nd, 2014

Engineers show light can play seesaw at the nanoscale: Discovery is another step toward faster and more energy-efficient optical devices for computation and communication September 22nd, 2014

New chip promising for tumor-targeting research September 22nd, 2014

Twisted graphene chills out: When two sheets of graphene are stacked in a special way, it is possible to cool down the graphene with a laser instead of heating it up, University of Manchester researchers have shown September 22nd, 2014

Materials/Metamaterials

Engineered proteins stick like glue even in water: New adhesives based on mussel proteins could be useful for naval or medical applications September 22nd, 2014

Smallest possible diamonds form ultra-thin nanothreads: Diamond nanothreads are likely to have extraordinary properties, including strength and stiffness greater than that of today's strongest nanotubes and polymers September 22nd, 2014

New star-shaped molecule breakthrough: Scientists at The University of Manchester have generated a new star-shaped molecule made up of interlocking rings, which is the most complex of its kind ever created September 22nd, 2014

Synthesis of Nanostructures with Controlled Shape, Size in Iran September 22nd, 2014

Announcements

Engineers show light can play seesaw at the nanoscale: Discovery is another step toward faster and more energy-efficient optical devices for computation and communication September 22nd, 2014

New chip promising for tumor-targeting research September 22nd, 2014

Twisted graphene chills out: When two sheets of graphene are stacked in a special way, it is possible to cool down the graphene with a laser instead of heating it up, University of Manchester researchers have shown September 22nd, 2014

New star-shaped molecule breakthrough: Scientists at The University of Manchester have generated a new star-shaped molecule made up of interlocking rings, which is the most complex of its kind ever created September 22nd, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals

Engineered proteins stick like glue even in water: New adhesives based on mussel proteins could be useful for naval or medical applications September 22nd, 2014

Smallest possible diamonds form ultra-thin nanothreads: Diamond nanothreads are likely to have extraordinary properties, including strength and stiffness greater than that of today's strongest nanotubes and polymers September 22nd, 2014

Twisted graphene chills out: When two sheets of graphene are stacked in a special way, it is possible to cool down the graphene with a laser instead of heating it up, University of Manchester researchers have shown September 22nd, 2014

New star-shaped molecule breakthrough: Scientists at The University of Manchester have generated a new star-shaped molecule made up of interlocking rings, which is the most complex of its kind ever created September 22nd, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE