Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Check out the assembly line of the future!: NSF's Center for Hierarchical Manufacturing proves good test bed for large-scale nanomanufacturing designs

“Made to order,” a phrase that began with the service industry, is now vital to manufacturing's future. Manufacturing production has recently grown at its fastest pace in more than a decade, creating more economic value per dollar spent than any other sector. Adding to this surge is customization--the ability to quickly and efficiently make what you want when you want it. Rapid, efficient customization is becoming a reality for high-tech engineers, students and "maker" enthusiasts. Explore the remarkable advances that may transform manufacturing forever in this Special report.

Credit: NBC Learn, U.S. Patent and Trademark Office, and National Science Foundation
“Made to order,” a phrase that began with the service industry, is now vital to manufacturing's future. Manufacturing production has recently grown at its fastest pace in more than a decade, creating more economic value per dollar spent than any other sector. Adding to this surge is customization--the ability to quickly and efficiently make what you want when you want it. Rapid, efficient customization is becoming a reality for high-tech engineers, students and "maker" enthusiasts. Explore the remarkable advances that may transform manufacturing forever in this Special report.

Credit: NBC Learn, U.S. Patent and Trademark Office, and National Science Foundation

Abstract:
There's no shortage of ideas about how to use nanotechnology, but one of the major hurdles is how to manufacture some of the new products on a large scale. With support from the National Science Foundation (NSF), University of Massachusetts (UMass) Amherst chemical engineer Jim Watkins and his team are working to make nanotechnology more practical for industrial-scale manufacturing.

Check out the assembly line of the future!: NSF's Center for Hierarchical Manufacturing proves good test bed for large-scale nanomanufacturing designs

Arlington, VA | Posted on May 20th, 2014

One of the projects they're working on at the NSF Center for Hierarchical Manufacturing (CHM) is a roll-to-roll process for nanotechnology that is similar to what is used in traditional manufacturing. They're also designing a process to manufacture printable coatings that improve the way solar panels absorb and direct light. They're even investigating the use of self-assembling nanoscale products that could have applications for many industries.

"New nanotechnologies can't impact the U.S. economy until practical methods are available for producing products, using them in high volumes, at low cost. CHM is researching the fundamental scientific and engineering barriers that impede such commercialization, and innovating new technologies to surmount those barriers," notes Bruce Kramer, senior advisor in the NSF Engineering Directorate's Division of Civil, Mechanical and Manufacturing Innovation (CMMI), which funded the research.

"The NSF Center for Hierarchical Manufacturing is developing platform technologies for the economical manufacture of next generation devices and systems for applications in computing, electronics, energy conversion, resource conservation and human health," explains Khershed Cooper, a CMMI program director.

"The center creates fabrication tools that are enabling versatile and high-rate continuous processes for the manufacture of nanostructures that are systematically integrated into higher order structures using bottom-up and top-down techniques," Cooper says. "For example, CHM is designing and building continuous, roll-to-roll nanofabrication systems that can print, in high-volume, 3-D nanostructures and multi-layer nanodevices at sub-100 nanometer resolution, and in the process, realize hybrid electronic-optical-mechanical nanosystems."

The research in this episode was supported by NSF award #1025020, Nanoscale Science and Engineering Centers (NSEC): Center for Hierarchical Manufacturing.

Miles O'Brien, Science Nation Correspondent
Ann Kellan, Science Nation Producer

####

For more information, please click here

Contacts:
The National Science Foundation
4201 Wilson Boulevard
Arlington, Virginia 22230
USA Tel: (703) 292-5111
FIRS: (800) 877-8339
TDD: (800) 281-8749

Copyright © National Science Foundation (NSF)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New method allows for greater variation in band gap tunability: The method can change a material's electronic band gap by up to 200 percent January 31st, 2015

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

Everything You Need To Know About Nanopesticides January 30th, 2015

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Videos/Movies

Los Alamos Develops New Technique for Growing High-Efficiency Perovskite Solar Cells: Researchers’ crystal-production insights resolve manufacturing difficulty January 29th, 2015

'Bulletproof' battery: Kevlar membrane for safer, thinner lithium rechargeables January 28th, 2015

Stomach acid-powered micromotors get their first test in a living animal January 27th, 2015

OCSiAl supports NanoART Imagery Contest January 23rd, 2015

Govt.-Legislation/Regulation/Funding/Policy

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

Nanoscale Mirrored Cavities Amplify, Connect Quantum Memories: Advance could lead to quantum computing and the secure transfer of information over long-distance fiber optic networks January 28th, 2015

Detecting chemical weapons with a color-changing film January 28th, 2015

'Bulletproof' battery: Kevlar membrane for safer, thinner lithium rechargeables January 28th, 2015

Molecular Nanotechnology

Stomach acid-powered micromotors get their first test in a living animal January 27th, 2015

Nanoshuttle wear and tear: It's the mileage, not the age January 26th, 2015

Going with the flow January 16th, 2015

From the bottom up: Manipulating nanoribbons at the molecular level: Berkeley Lab and UC Berkeley team engineers the shape and properties of nanoscale strips of graphene January 12th, 2015

Discoveries

New method allows for greater variation in band gap tunability: The method can change a material's electronic band gap by up to 200 percent January 31st, 2015

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

Everything You Need To Know About Nanopesticides January 30th, 2015

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Announcements

New method allows for greater variation in band gap tunability: The method can change a material's electronic band gap by up to 200 percent January 31st, 2015

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

Everything You Need To Know About Nanopesticides January 30th, 2015

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Energy

New method allows for greater variation in band gap tunability: The method can change a material's electronic band gap by up to 200 percent January 31st, 2015

Crystal light: New light-converting materials point to cheaper, more efficient solar power: University of Toronto engineers study first single crystal perovskites for new solar cell and LED applications January 30th, 2015

Los Alamos Develops New Technique for Growing High-Efficiency Perovskite Solar Cells: Researchers’ crystal-production insights resolve manufacturing difficulty January 29th, 2015

Carbon nanoballs can greatly contribute to sustainable energy supply January 27th, 2015

Industrial

Industrial Nanotech, Inc. Announces New OEM Customer January 27th, 2015

Detection of Heavy Metals in Samples with Naked Eye January 26th, 2015

Iranian Scientists Produce Graphene-Based Oxygen Sensor January 23rd, 2015

Teijin to Participate in Nano Tech 2015 January 22nd, 2015

Printing/Lithography/Inkjet/Inks

Toyocolor to Launch New Carbon Nanotube Materials at nano tech 2015 January 24th, 2015

Teijin to Participate in Nano Tech 2015 January 22nd, 2015

A new step towards using graphene in electronic applications January 14th, 2015

Nanoshaping method points to future manufacturing technology December 11th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE