Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > New insight into thermoelectric materials may boost green technologies: A U of Miami physicist and his collaborators find remarkable thermoelectric properties for a metal that may impact the search for materials useful in power generation, refrigeration or energy detection

 Lithium purple-bronze (LiPB) is a thermoelectric material comprised of aligned conducting, zig-zag chains of molybdenum and oxygen (left image, pink and white circles with green bonds). When an electric current was applied in a direction slightly misaligned with the chains (depicted as gray lines, right image), heat flowed perpendicular to the current, a phenomenon known as the transverse Peltier effect. The efficiency of this effect in LiPB was among the largest known for a single compound.

Credit: Dr. Joshua Cohn, University of Miami
Lithium purple-bronze (LiPB) is a thermoelectric material comprised of aligned conducting, zig-zag chains of molybdenum and oxygen (left image, pink and white circles with green bonds). When an electric current was applied in a direction slightly misaligned with the chains (depicted as gray lines, right image), heat flowed perpendicular to the current, a phenomenon known as the transverse Peltier effect. The efficiency of this effect in LiPB was among the largest known for a single compound.

Credit: Dr. Joshua Cohn, University of Miami

Abstract:
Thermoelectric materials can turn a temperature difference into an electric voltage. Among their uses in a variety of specialized applications: generating power on space probes and cooling seats in fancy cars.

New insight into thermoelectric materials may boost green technologies: A U of Miami physicist and his collaborators find remarkable thermoelectric properties for a metal that may impact the search for materials useful in power generation, refrigeration or energy detection

Miami, FL | Posted on May 14th, 2014

University of Miami (UM) physicist Joshua Cohn and his collaborators report new surprising properties of a metal named lithium purple-bronze (LiPB) that may impact the search for materials useful in power generation, refrigeration, or energy detection. The findings are published in the journal Physical Review Letters.

"If current efficiencies of thermoelectric materials were doubled, thermoelectric coolers might replace the conventional gas refrigerators in your home," said Cohn, professor and chairman of the UM Department of Physics in the College of Arts and Sciences and lead author of the study. "Converting waste heat into electric power, for example, using vehicle exhaust, is a near-term 'green' application of such materials."

Useful thermoelectric materials produce a large voltage for a given temperature difference, with the ratio known as "thermopower." LiPB is comprised of aligned conducting chains. The researchers found that this material has very different thermopowers when the temperature difference is applied parallel or perpendicular to the conducting chains. When an electric current was applied in a direction slightly misaligned with the chains, heat flowed perpendicular to the current, a phenomenon known as the "transverse Peltier effect." The efficiency of this effect in LiPB was among the largest known for a single compound. "That such a large directional difference in thermopower exists in a single compound is exceedingly rare and makes applications possible," Cohn said. "This is significant because transverse Peltier devices typically employ a sandwich of different compounds that is more complicated and costly to fabricate."

As their motivation for the work, Cohn noted that metals with a similar electronic structure often exhibit interesting physics and the thermoelectric properties of LiPB had never been studied in detail. "The present material," he said, "might be useful as it is, but the larger implication of our work is that the ingredients underlying its special properties may serve as a guide to finding or engineering new and improved materials."
###

The study is titled "Extreme Thermopower Anisotropy and Interchain Transport in the Quasi-One-Dimensional Metal Li0.9Mo6O17" Other authors of the study are Saeed Moshfeghyeganeh,Ph.D. student in the Department of Physics at UM; Carlos A. M. dos Santos, professor at the Escola de Engenharia de Lorena in Brazil and John J. Neumeier, professor in the Department of Physics, Montana State University.

####

For more information, please click here

Contacts:
Annette Gallagher

305-284-1121

Copyright © University of Miami

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A nano-roundabout for light December 10th, 2016

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Discoveries

A nano-roundabout for light December 10th, 2016

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Materials/Metamaterials

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Physicists decipher electronic properties of materials in work that may change transistors December 6th, 2016

Infrared instrumentation leader secures exclusive use of Vantablack coating December 5th, 2016

Announcements

A nano-roundabout for light December 10th, 2016

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

A nano-roundabout for light December 10th, 2016

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Research partnerships

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

Exotic insulator may hold clue to key mystery of modern physics: Johns Hopkins-led research shows material living between classical and quantum worlds December 8th, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project