Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Iranians Produce Nanocomposite from Sugarcane

Abstract:
Iranian researchers from the University of Tehran utilized sugarcane waste to produce nanocomposite film.

Iranians Produce Nanocomposite from Sugarcane

Tehran, Iran | Posted on April 28th, 2014

The product has unique physical and mechanical properties and has many applications in packaging, glue making, medicine and electronic industries.

These nanofibers have simpler, faster and more cost-effective production method in comparison with other production methods. The size of the produced cellulose nanofiber has been reported about 3913 nm while tension resistant of the nanocomposite produced from the nanofibers has been reported about 140 MPa. The produced nanocomposite has higher strength in comparison with the majority of biodegradable and non-biodegradable films. It seems that the produced nanocomposite can be considered an appropriate option for the elimination of artificial polymers and oil derivatives from packaging materials.

In order to produce the product, cellulose fibers were produced through mechanical milling method after separation and purification of cellulose from sugarcane bagasse, and then nanopapers were produced. Next, full cellulose nanocomposite was produced through partial dissolving method, and its characteristics were evaluated.

Results showed that as the time of partial dissolving increases, the diffusivity of the nanocomposite into vapor decreases due to the increase in glassy part (amorphous) to crystalline part. However, thermal resistant decreases as the time of partial dissolving increases because a decrease is observed in the crystalline part.

In addition, when cellulose microfibers turn into nanofibers, resistance against the tension of the produced films increases. The researchers believe that the reason for the increase is the reduction in fault points (points that lead to the fracture in cellulose fibers), increase in specific area, and integrity of nanofibers. Transparency of samples significantly increases as the size of particles decreases to nanometric scale.

Results of the research have been published in Carbohydrate Polymers, vol. 104, issue 1, January 2014, pp. 59-65.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Aculon Hires New Business Development Director December 19th, 2014

Discoveries

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Materials/Metamaterials

Aculon Hires New Business Development Director December 19th, 2014

ORNL microscopy pencils patterns in polymers at the nanoscale December 17th, 2014

Pb islands in a sea of graphene magnetise the material of the future December 16th, 2014

Graphene Applied in Production of Recyclable Electrodes December 13th, 2014

Announcements

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Aculon Hires New Business Development Director December 19th, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Food/Agriculture/Supplements

First Home-Made Edible Herbal Nanodrug Presented to Pharmacies across Iran December 17th, 2014

Scientists trace nanoparticles from plants to caterpillars: Rice University study examines how nanoparticles behave in food chain December 16th, 2014

Iranian Scientists Convert Curcumin Existing in Turmeric into Edible Nanodrug December 15th, 2014

Nanoparticles Prove Effective in Removing Phosphor from Calcareous Soil December 10th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE