Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Characterizing inkjet inks: Malvern Instruments presents new rheological research

The upcoming Malvern Instruments webinar presents how the m-VROCi and Kinexus rotational rheometer provides the dynamic viscosity measurement range needed for ceramic inkjet inks characterization
The upcoming Malvern Instruments webinar presents how the m-VROCi and Kinexus rotational rheometer provides the dynamic viscosity measurement range needed for ceramic inkjet inks characterization

Abstract:
In a webinar on 7 May 2014, Dr. John Duffy, Rheology Technical Specialist, Malvern Instruments, will present new experimental data that shows how the recently launched m-VROCi microfluidic rheometer can be used alongside the Kinexus rotational rheometer and Zetasizer Nano dynamic light scattering (DLS) system to efficiently develop high performance ceramic inkjet inks. Entitled ‘Optimize ceramic inkjet ink printability, stability & behavior using rheology', the webinar explores the application of rheological and particle size data to characterize the physical stability, printhead compatibility and jet-ability of inkjet inks. This same research is also accessible via a recently published Malvern application note ‘Optimizing Rheology for Ceramic Inkjet Inks', which is available for download at www.malvern.com/en/CeramicInkjetRheology.

Characterizing inkjet inks: Malvern Instruments presents new rheological research

Malvern, UK | Posted on April 23rd, 2014

Inkjet printing has substantial advantages over traditional ceramic tile decoration techniques, improving the definition of the pattern or image, reducing waste and providing greater automation. However, ensuring process performance and end product quality relies on engineering inkjet inks which perform appropriately across a wide range of conditions, from the low shear stress associated with storage through to the extremely high shear rates generated within an inkjet print head.

The new Malvern webinar and application note describe the use of the Kinexus rotational rheometer and the unique m-VROCi microfluidic rheometer to measure viscosity across the wide shear range of interest. In the study particle size data were also measured using a Zetasizer Nano DLS instrument; the world's most widely used system for size and zeta potential characterization of nanoparticles and colloids. The data generated supports the formulation of inkjet inks with the stability, printhead compatibility and printability performance required for inkjet printing processes.

Malvern's Kinexus rotational rheometers deliver high performance characterization of dispersions and complex fluids and are capable of measuring viscosities over a wide range of shear rates and shear stresses. The Kinexus is especially well-suited to low shear stress measurements that relate to gravitational processes, such as inkjet ink pigment sedimentation during storage. The m-VROCi allows the robust measurement of low viscosity formulations at ultra-high shear rates, such as those experienced in the inkjet printhead itself, which cannot be measured using conventional rheometry techniques. Together the two instruments provide the rheological understanding needed to develop high performance inkjet inks for highly efficient, high quality ceramic printing processes.

Registration for the webinar can be accessed at www.malvern.com/ceramicinkjet.

For more information on Malvern's rheological characterization range visit www.malvern.com/en/rheologyviscosity.

Malvern, Malvern Instruments and Kinexus are registered trademarks of Malvern Instruments Ltd

####

About Malvern Instruments
Malvern provides the materials and biophysical characterization technology and expertise that enables scientists and engineers to understand and control the properties of dispersed systems. These systems range from proteins and polymers in solution, particle and nanoparticle suspensions and emulsions, through to sprays and aerosols, industrial bulk powders and high concentration slurries. Used at all stages of research, development and manufacturing, Malvern’s materials characterization instruments provide critical information that helps accelerate research and product development, enhance and maintain product quality and optimize process efficiency.

Our products reflect Malvern’s drive to exploit the latest technological innovations and our commitment to maximizing the potential of established techniques. They are used by both industry and academia, in sectors ranging from pharmaceuticals and biopharmaceuticals to bulk chemicals, cement, plastics and polymers, energy and the environment.

Malvern systems are used to measure particle size, particle shape, zeta potential, protein charge, molecular weight, mass, size and conformation, rheological properties and for chemical identification, advancing the understanding of dispersed systems across many different industries and applications.

Headquartered in Malvern, UK, Malvern Instruments has subsidiary organizations in all major European markets, North America, China, Japan and Korea, a joint venture in India, a global distributor network and applications laboratories around the world. www.malvern.com

Facebook: MalvernInstruments
Blog: www.materials-talks.com
Youtube: malverninstruments
Linked-In: malvern-instruments
Twitter: malvern_news
Google +: https://plus.google.com/+malvern

For more information, please click here

Contacts:
For press information, please contact:

Trish Appleton
Kapler Communications
Phoenix House, Phoenix Park
Eaton Socon, Cambridgeshire, PE19 8EP, UK
Tel: +44 (0)1480 471059
Fax: +44 (0)1480 471069


USA contact:

Marisa Fraser
Malvern Instruments Inc.
117 Flanders Road
Westborough, MA 01581-1042 USA
Tel: +1 508 768 6400
Fax: +1 508 768 6403


Please send sales enquiries to:

Alison Vines
Malvern Instruments Ltd
Enigma Business Park, Grovewood Road
Malvern, Worcestershire WR14 1XZ UK
Tel: +44 (0) 1684 892456
Fax: +44 (0) 1684 892789

Copyright © Malvern Instruments

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Dartmouth team creates new method to control quantum systems May 24th, 2016

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

Attosecond physics: A switch for light-wave electronics May 24th, 2016

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

Microfluidics/Nanofluidics

Little ANTs: Researchers build the world's tiniest engine May 3rd, 2016

POSTECH researchers develop a control algorithm for more accurate lab-on-a-chip devices April 6th, 2016

Microfluidic devices gently rotate small organisms and cells March 24th, 2016

New microwave imaging approach opens a nanoscale view on processes in liquids: Technique can explore technologically and medically important processes that occur at boundaries between liquids and solids, such as in batteries or along cell membranes March 16th, 2016

Discoveries

Dartmouth team creates new method to control quantum systems May 24th, 2016

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

Attosecond physics: A switch for light-wave electronics May 24th, 2016

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

Announcements

Dartmouth team creates new method to control quantum systems May 24th, 2016

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

Attosecond physics: A switch for light-wave electronics May 24th, 2016

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

Tools

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

More light on cancer: Scientists created nanoparticles to highlight cancer cells May 21st, 2016

Nanotubes are beacons in cancer-imaging technique: Rice University researchers use spectral triangulation to pinpoint location of tumors May 21st, 2016

Carnegie Mellon develops bio-mimicry method for preparing and labeling stem cells: Method allows researchers to prepare mesenchymal stem cells and monitor them using MRI May 19th, 2016

Events/Classes

Novel gene therapy shows potential for lung repair in asthma May 18th, 2016

Arrowhead Pharmaceuticals' Preclinical Candidate ARC-LPA Achieves 98% Knockdown and Long Duration of Effect after Subcutaneous Administration May 10th, 2016

Nanometrics Announces Upcoming Investor Events May 10th, 2016

Oxford Instruments Asylum Research and McGill University Announce the McGill AFM Summer School and Workshop, May 12-13, 2016 May 4th, 2016

Printing/Lithography/Inkjet/Inks

Physicists create first metamaterial with rewritable magnetic ordering May 23rd, 2016

Electrically Conductive Graphene Ink Enables Printing of Biosensors April 23rd, 2016

Highlights from the Graphene Flagship April 22nd, 2016

Penn engineers develop first transistors made entirely of nanocrystal 'inks April 11th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic