Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > High-Performance, Low-Cost Ultracapacitors Built with Graphene and Carbon Nanotubes: Future devices based on technology could bridge gap between batteries and conventional capacitors in portable electronics and hybrid electric vehicles

A scanning electron microscope image shows the ultracapacitor’s composite film containing graphene flakes and single-walled carbon nanotubes.
Credit: Journal of Applied Physics
A scanning electron microscope image shows the ultracapacitor’s composite film containing graphene flakes and single-walled carbon nanotubes.

Credit: Journal of Applied Physics

Abstract:
By combining the powers of two single-atom-thick carbon structures, researchers at the George Washington University's Micro-propulsion and Nanotechnology Laboratory have created a new ultracapacitor that is both high performance and low cost.

High-Performance, Low-Cost Ultracapacitors Built with Graphene and Carbon Nanotubes: Future devices based on technology could bridge gap between batteries and conventional capacitors in portable electronics and hybrid electric vehicles

Melville, NY | Posted on April 23rd, 2014


High-Performance, Low-Cost Ultracapacitors Built with Graphene and Carbon Nanotubes
Future devices based on technology could bridge gap between batteries and conventional capacitors in portable electronics and hybrid electric vehicles
From the Journal:
Journal of Applied Physics
For immediate release
By Jason Bardi

WASHINGTON D.C., April 22, 2014 -- By combining the powers of two single-atom-thick carbon structures, researchers at the George Washington University's Micro-propulsion and Nanotechnology Laboratory have created a new ultracapacitor that is both high performance and low cost.

The device, described in the Journal of Applied Physics, capitalizes on the synergy brought by mixing graphene flakes with single-walled carbon nanotubes, two carbon nanostructures with complementary properties.

Ultracapacitors are souped-up energy storage devices that hold high amounts of energy and can also quickly release that energy in a surge of power. By combining the high energy-density properties of batteries with the high power-density properties of conventional capacitors, ultracapacitors can boost the performance of electric vehicles, handheld electronics, audio systems and more.

Single-walled carbon nanotubes and graphene both have unique and excellent electronic, thermal, and mechanical properties that make them attractive materials for designing new ultracapacitors, said Jian Li, first author on the paper. Many groups had explored the use of the two materials separately, but few had looked at combining them, he said.

"In our lab we developed an approach by which we can obtain both single-walled carbon nanotubes and graphene, so we came up with the idea to take advantage of the two promising carbon nanomaterials together," added Michael Keidar, a professor in the Department of Mechanical and Aerospace Engineering in the School of Engineering and Applied Science at GW, and director of the Micro-propulsion and Nanotechnology Laboratory.

The researchers synthesized the graphene flakes and nanotubes by vaporizing a hollow graphite rod filled with metallic catalyst powder with an electric arc. They then mixed the two nanostructures together to form an ink that they rolled onto paper, a common separator for current commercial capacitors.

The combination device's specific capacitance, a measurement of the performance of a capacitor per unit of weight, was three times higher than the specific capacitance of a device made from carbon nanotubes alone.

The advantage of the hybrid structure, Li explained, is that the graphene flakes provide high surface area and good in-plane conductivity, while the carbon nanotubes connect all of the structures to form a uniform network.

While other types of ultracapacitors have also achieved the high specific capacitance of the graphene/nanotube hybrid, the researchers say, the main advantage of the combination approach is its low costs, since the team has developed a simple way to manufacture large amounts of the desirable mix of carbon nanostructures.

The hybrid ultracapacitor is also small and light, an advantage as electronic devices get ever smaller.

MORE INFORMATION: The George Washington University's Micro-propulsion and Nanotechnology Laboratory: https://www.mpnl.seas.gwu.edu

This work was supported by the NSF/DOE Partnership in Plasma Science and Technology (NSF Grant No. CBET-0853777 and DOE Grant No. DE-SC0001169), and an NSF Award (Title: EAGER: Exploring plasma mechanism of synthesis of graphene in arc discharge, NSF Award No. 1249213).

####

About American Institute of Physics
Journal of Applied Physics

Journal of Applied Physics is an influential international journal publishing significant new experimental and theoretical results of applied physics research.

For more information, please click here

Contacts:
Jason Socrates Bardi

240-535-4954

Copyright © American Institute of Physics

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Article title:

Related News Press

News and information

Patent for the Novel Cancer Therapies – Ceramide Nanoliposomes March 4th, 2015

Magnetic vortices in nanodisks reveal information: Researchers from Dresden and Jülich use microwaves to read out information from smallest storage devices March 4th, 2015

CiQUS researchers obtain high-quality perovskites over large areas by a chemical method March 4th, 2015

Arrowhead to Present at 2015 Barclays Global Healthcare Conference March 4th, 2015

Graphene

Black phosphorus is new 'wonder material' for improving optical communication March 3rd, 2015

UC research partnership explores how to best harness solar power March 2nd, 2015

Researchers turn unzipped nanotubes into possible alternative for platinum: Aerogel catalyst shows promise for fuel cells March 2nd, 2015

Graphene Shows Promise In Eradication Of Stem Cancer Cells March 1st, 2015

Govt.-Legislation/Regulation/Funding/Policy

The taming of magnetic vortices: Unified theory for skyrmion-materials March 3rd, 2015

Black phosphorus is new 'wonder material' for improving optical communication March 3rd, 2015

New nanodevice defeats drug resistance: Tiny particles embedded in gel can turn off drug-resistance genes, then release cancer drugs March 2nd, 2015

Forbidden quantum leaps possible with high-res spectroscopy March 2nd, 2015

Nanotubes/Buckyballs

Researchers turn unzipped nanotubes into possible alternative for platinum: Aerogel catalyst shows promise for fuel cells March 2nd, 2015

Chromium-Centered Cycloparaphenylene Rings as New Tools for Making Functionalized Nanocarbons February 24th, 2015

Building tailor-made DNA nanotubes step by step: New, block-by-block assembly method could pave way for applications in opto-electronics, drug delivery February 23rd, 2015

Half spheres for molecular circuits: Corannulene shows promising electronic properties February 17th, 2015

Discoveries

Experiment and theory unite at last in debate over microbial nanowires: New model and experiments settle debate over metallic-like conductivity of microbial nanowires in bacterium March 4th, 2015

Magnetic vortices in nanodisks reveal information: Researchers from Dresden and Jülich use microwaves to read out information from smallest storage devices March 4th, 2015

CiQUS researchers obtain high-quality perovskites over large areas by a chemical method March 4th, 2015

Nanosorbents Increase Extraction, Recycling of Silver from Aqueous Solutions March 4th, 2015

Announcements

Experiment and theory unite at last in debate over microbial nanowires: New model and experiments settle debate over metallic-like conductivity of microbial nanowires in bacterium March 4th, 2015

Magnetic vortices in nanodisks reveal information: Researchers from Dresden and Jülich use microwaves to read out information from smallest storage devices March 4th, 2015

CiQUS researchers obtain high-quality perovskites over large areas by a chemical method March 4th, 2015

Arrowhead to Present at 2015 Barclays Global Healthcare Conference March 4th, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Experiment and theory unite at last in debate over microbial nanowires: New model and experiments settle debate over metallic-like conductivity of microbial nanowires in bacterium March 4th, 2015

Magnetic vortices in nanodisks reveal information: Researchers from Dresden and Jülich use microwaves to read out information from smallest storage devices March 4th, 2015

Nanosorbents Increase Extraction, Recycling of Silver from Aqueous Solutions March 4th, 2015

The taming of magnetic vortices: Unified theory for skyrmion-materials March 3rd, 2015

Automotive/Transportation

Glass coating improves battery performance: To improve lithium-sulfur batteries, researchers added glass cage-like coating and graphene oxide March 2nd, 2015

Researchers turn unzipped nanotubes into possible alternative for platinum: Aerogel catalyst shows promise for fuel cells March 2nd, 2015

Scientific breakthrough in rechargeable batteries: Researchers from Singapore and Québec Team Up to Develop Next-Generation Materials to Power Electronic Devices and Electric Vehicles February 28th, 2015

In quest for better lithium-air batteries, chemists boost carbon's stability: Nanoparticle coatings improve stability, cyclability of '3DOm' carbon February 25th, 2015

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Glass coating improves battery performance: To improve lithium-sulfur batteries, researchers added glass cage-like coating and graphene oxide March 2nd, 2015

Scientific breakthrough in rechargeable batteries: Researchers from Singapore and Québec Team Up to Develop Next-Generation Materials to Power Electronic Devices and Electric Vehicles February 28th, 2015

In quest for better lithium-air batteries, chemists boost carbon's stability: Nanoparticle coatings improve stability, cyclability of '3DOm' carbon February 25th, 2015

Dendrite eraser: New electrolyte rids batteries of short-circuiting fibers: Solution enables a battery with both high efficiency & current density February 24th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE