Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Iranian Researchers Present New Model to Strengthen Superconductivity at Higher Temperatures

Abstract:
Iranian scientists from Institute for Advanced Studies in Basic Sciences in Zanjan presented a new model that expresses the possibility for the formation of superconductivity properties at high temperature, independent from the type of the material.

Iranian Researchers Present New Model to Strengthen Superconductivity at Higher Temperatures

Tehran, Iran | Posted on April 19th, 2014

The idea can be used in the production of various electronic nano-pieces in electronics and communications industries.

One of the reasons that superconductivity characteristic is not used in today technologies is that the characteristic is degraded as the temperature increases. On the other hand, it is very expensive to provide cold conditions for the good performance of superconductive materials. Efforts are currently being made to produce superconductors that are active at appropriate temperatures. The majority of the researchers try to produce high-temperature superconductors by combining various materials. This research presents a model that enables the formation of superconductivity at high temperatures, independent from the material type.

Result of the research show that there is a possibility of the creation of intra-layer superconductivity in graphene nanostructures. In this type of superconductivity, charge carriers that are condensed and play a major role in the creation of superconductivity belong to different layers of bi-layer graphene. There is unique symmetry in this type of superconductivity that results in the better reduction of the phenomenon at temperatures higher than 0 K. It was always believed that superconductivity would become weak and was destroyed at temperatures higher than 0 K.

According to the results, very accurate magnetic sensors can be designed, which are able to measure very weak magnetic waves of brain and to diagnose the disease by investigating the mechanism of the brain.

Results of the research have been published in Physical Review Letters, vol. 108, issue 14, April 2012, pp. 147001-147005.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Nanoscale assembly line August 29th, 2014

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

Superconductivity

Study finds physical link to strange electronic behavior: Neutron measurements offer new clues about iron-based superconductor July 31st, 2014

UCF Nanotech Spinout Developing Revolutionary Battery Technology: Power the Next Generation of Electronics with Carbon July 23rd, 2014

Flashes of light on the superconductor: Using light to modulate the properties of a copper-based superconductor July 15th, 2014

Iranian researchers Produce High-Temperature Superconductive Nanorods July 7th, 2014

Nanomedicine

Nanoscale assembly line August 29th, 2014

Copper shines as flexible conductor August 29th, 2014

Novel 'butterfly' molecule could build new sensors, photoenergy conversion devices August 28th, 2014

PetLife Comments on CNN Story on Scorpion Venom Health Benefits August 27th, 2014

Sensors

Copper shines as flexible conductor August 29th, 2014

Novel 'butterfly' molecule could build new sensors, photoenergy conversion devices August 28th, 2014

RMIT delivers $30m boost to micro and nano-tech August 26th, 2014

Symphony of nanoplasmonic and optical resonators leads to magnificent laser-like light emission August 26th, 2014

Discoveries

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Nanoscale assembly line August 29th, 2014

Copper shines as flexible conductor August 29th, 2014

Novel 'butterfly' molecule could build new sensors, photoenergy conversion devices August 28th, 2014

Announcements

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Nanoscale assembly line August 29th, 2014

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Nanoscale assembly line August 29th, 2014

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

Copper shines as flexible conductor August 29th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE