Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Scientists Capture Ultrafast Snapshots of Light-Driven Superconductivity: X-rays reveal how rapidly vanishing 'charge stripes' may be behind laser-induced high-temperature superconductivity

In equilibrium (top), the charge stripe "ripples" run perpendicular to each other between the copper-oxide layers of the material. When a mid-infrared laser pulse strikes the material (middle), it "melts" these conflicting ripples and induces superconductivity (bottom). The experimenters used a carefully synchronized x-ray laser to take this femtosecond–fast "movie" to reveal how quickly the charge stripes melt. Image courtesy Jörg Harms, Max-Planck Institute for the Structure and Dynamics of Matter.
In equilibrium (top), the charge stripe "ripples" run perpendicular to each other between the copper-oxide layers of the material. When a mid-infrared laser pulse strikes the material (middle), it "melts" these conflicting ripples and induces superconductivity (bottom). The experimenters used a carefully synchronized x-ray laser to take this femtosecond–fast "movie" to reveal how quickly the charge stripes melt.

Image courtesy Jörg Harms, Max-Planck Institute for the Structure and Dynamics of Matter.

Abstract:
A new study pins down a major factor behind the appearance of superconductivity-the ability to conduct electricity with 100 percent efficiency-in a promising copper-oxide material.

Scientists Capture Ultrafast Snapshots of Light-Driven Superconductivity: X-rays reveal how rapidly vanishing 'charge stripes' may be behind laser-induced high-temperature superconductivity

Upton, NY | Posted on April 16th, 2014

Scientists used carefully timed pairs of laser pulses at SLAC National Accelerator Laboratory's Linac Coherent Light Source (LCLS) to trigger superconductivity in the material and immediately take x-ray snapshots of its atomic and electronic structure as superconductivity emerged.

They discovered that so-called "charge stripes" of increased electrical charge melted away as superconductivity appeared. Further, the results help rule out the theory that shifts in the material's atomic lattice hinder the onset of superconductivity.

Armed with this new understanding, scientists may be able to develop new techniques to eliminate charge stripes and help pave the way for room-temperature superconductivity, often considered the holy grail of condensed matter physics. The demonstrated ability to rapidly switch between the insulating and superconducting states could also prove useful in advanced electronics and computation.

The results, from a collaboration led by scientists from the Max Planck Institute for the Structure and Dynamics of Matter in Germany and the U.S. Department of Energy's SLAC and Brookhaven national laboratories, were published in the journal Physical Review Letters.

"The very short timescales and the need for high spatial resolution made this experiment extraordinarily challenging," said co-author Michael Först, a scientist at the Max Planck Institute. "Now, using femtosecond x-ray pulses, we found a way to capture the quadrillionths-of-a-second dynamics of the charges and the crystal lattice. We've broken new ground in understanding light-induced superconductivity."

Ripples in Quantum Sand

The compound used in this study was a layered material consisting of lanthanum, barium, copper, and oxygen grown at Brookhaven Lab by physicist Genda Gu. Each copper oxide layer contained the crucial charge stripes.

"Imagine these stripes as ripples frozen in the sand," said John Hill, a Brookhaven Lab physicist and coauthor on the study. "Each layer has all the ripples going in one direction, but in the neighboring layers they run crosswise. From above, this looks like strings in a pile of tennis racquets. We believe that this pattern prevents each layer from talking to the next, thus frustrating superconductivity."

To excite the material and push it into the superconducting phase, the scientists used mid-infrared laser pulses to "melt" those frozen ripples. These pulses had previously been shown to induce superconductivity in a related compound at a frigid 10 Kelvin (minus 442 degrees Fahrenheit).

"The charge stripes disappeared immediately," Hill said. "But specific distortions in the crystal lattice, which had been thought to stabilize these stripes, lingered much longer. This shows that only the charge stripes inhibit superconductivity."

Stroboscopic Snapshots

To capture these stripes in action, the collaboration turned to SLAC's LCLS x-ray laser, which works like a camera with a shutter speed faster than 100 femtoseconds, or quadrillionths of a second, and provides atomic-scale image resolution. LCLS uses a section of SLAC's 2-mile-long linear accelerator to generate the electrons that give off x-ray light.

"This represents a very important result in the field of superconductivity using LCLS," said Josh Turner, an LCLS staff scientist. "It demonstrates how we can unravel different types of complex mechanisms in superconductivity that have, up until now, been inseparable."

He added, "To make this measurement, we had to push the limits of our current capabilities. We had to measure a very weak, barely detectable signal with state-of-the-art detectors, and we had to tune the number of x-rays in each laser pulse to see the signal from the stripes without destroying the sample."

The researchers used the so-called "pump-probe" approach: an optical laser pulse strikes and excites the lattice (pump) and an ultrabright x-ray laser pulse is carefully synchronized to follow within femtoseconds and measure the lattice and stripe configurations (probe). Each round of tests results in some 20,000 x-ray snapshots of the changing lattice and charge stripes, a bit like a strobe light rapidly illuminating the process.

To measure the changes with high spatial resolution, the team used a technique called resonant soft x-ray diffraction. The LCLS x-rays strike and scatter off the crystal into the detector, carrying time-stamped signatures of the material's charge and lattice structure that the physicists then used to reconstruct the rise and fall of superconducting conditions.

"By carefully choosing a very particular x-ray energy, we are able to emphasize the scattering from the charge stripes," said Brookhaven Lab physicist Stuart Wilkins, another co-author on the study. "This allows us to single out a very weak signal from the background."

Toward Superior Superconductors

The x-ray scattering measurements revealed that the lattice distortion persists for more than 10 picoseconds (trillionths of a second)-long after the charge stripes melted and superconductivity appeared, which happened in less than 400 femtoseconds. Slight as it may sound, those extra trillionths of a second make a huge difference.

"The findings suggest that the relatively weak and long-lasting lattice shifts do not play an essential role in the presence of superconductivity," Hill said. "We can now narrow our focus on the stripes to further pin down the underlying mechanism and potentially engineer superior materials."

Andrea Cavalleri, Director of the Max Planck Institute, said, "Light-induced superconductivity was only recently discovered, and we're already seeing fascinating implications for understanding it and going to higher temperatures. In fact, we have observed the signature of light-induced superconductivity in materials all the way up to 300 Kelvin (80 degrees Fahrenheit)-that's really a significant breakthrough that warrants much deeper investigations."

Other collaborators on this research include the University of Groningen, the University of Oxford, Diamond Light Source, the Lawrence Berkeley National Laboratory, Stanford University, the European XFEL, the University of Hamburg and the Center for Free-Electron Laser Science.

The research conducted at the Soft X-ray Materials Science (SXR) experimental station at SLAC's LCLS-a DOE Office of Science user facility-was funded by Stanford University, Lawrence Berkeley National Laboratory, the University of Hamburg, and the Center for Free-Electron Laser Science (CFEL). Work performed at Brookhaven Lab was supported by the DOE's Office of Science.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

####

About Brookhaven National Laboratory
One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation for the State University of New York on behalf of Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit, applied science and technology organization.

Visit Brookhaven Lab's electronic newsroom for links, news archives, graphics, and more at www.bnl.gov/newsroom, follow Brookhaven Lab on Twitter, twitter.com/BrookhavenLab, or find us on Facebook, www.facebook.com/BrookhavenLab/.

For more information, please click here

Contacts:
Justin Eure
(631) 344-2347

or
Peter Genzer
(631) 344-3174

Copyright © Brookhaven National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Newly-Developed Nanobiosensor Quickly Diagnoses Cancer August 20th, 2014

Ultrasonic Waves Applied in Production of Graphene Nanosheets August 20th, 2014

The channel that relaxes DNA: Relaxing DNA strands by using nano-channels: Instructions for use August 20th, 2014

Success in Intracellular Imaging of Cesium Distribution in Plants Used for Cesium Absorption August 19th, 2014

Laboratories

Promising Ferroelectric Materials Suffer From Unexpected Electric Polarizations: Brookhaven Lab scientists find surprising locked charge polarizations that impede performance in next-gen materials that could otherwise revolutionize data-driven devices August 18th, 2014

Research of Empa scientists on the cover of "Nature": Synthesis of structurally pure carbon nanotubes using molecular seeds August 7th, 2014

Nanostructured metal-oxide catalyst efficiently converts CO2 to methanol: Highly reactive sites at interface of 2 nanoscale components could help overcome hurdle of using CO2 as a starting point in producing useful products July 31st, 2014

Physics

Promising Ferroelectric Materials Suffer From Unexpected Electric Polarizations: Brookhaven Lab scientists find surprising locked charge polarizations that impede performance in next-gen materials that could otherwise revolutionize data-driven devices August 18th, 2014

Moore quantum materials: Recipe for serendipity - Moore Foundation grant will allow Rice physicist to explore quantum materials August 12th, 2014

Harry Atwater and Albert Polman receive the Julius Springer Prize for Applied Physics 2014: Scientists honored for their pioneering achievements in plasmonics and nanophotonics August 8th, 2014

Watching Schrödinger's cat die (or come to life): Steering quantum evolution & using probes to conduct continuous error correction in quantum computers July 30th, 2014

Superconductivity

Study finds physical link to strange electronic behavior: Neutron measurements offer new clues about iron-based superconductor July 31st, 2014

UCF Nanotech Spinout Developing Revolutionary Battery Technology: Power the Next Generation of Electronics with Carbon July 23rd, 2014

Govt.-Legislation/Regulation/Funding/Policy

Success in Intracellular Imaging of Cesium Distribution in Plants Used for Cesium Absorption August 19th, 2014

Electrical engineers take major step toward photonic circuits: Team invents non-metallic metamaterial that enables them to 'compress' and contain light August 19th, 2014

Promising Ferroelectric Materials Suffer From Unexpected Electric Polarizations: Brookhaven Lab scientists find surprising locked charge polarizations that impede performance in next-gen materials that could otherwise revolutionize data-driven devices August 18th, 2014

Novel chip-based platform could simplify measurements of single molecules: A nanopore-gated optofluidic chip combines electrical and optical measurements of single molecules onto a single platform August 14th, 2014

Discoveries

Newly-Developed Nanobiosensor Quickly Diagnoses Cancer August 20th, 2014

Ultrasonic Waves Applied in Production of Graphene Nanosheets August 20th, 2014

The channel that relaxes DNA: Relaxing DNA strands by using nano-channels: Instructions for use August 20th, 2014

Electrical engineers take major step toward photonic circuits: Team invents non-metallic metamaterial that enables them to 'compress' and contain light August 19th, 2014

Announcements

Newly-Developed Nanobiosensor Quickly Diagnoses Cancer August 20th, 2014

Ultrasonic Waves Applied in Production of Graphene Nanosheets August 20th, 2014

The channel that relaxes DNA: Relaxing DNA strands by using nano-channels: Instructions for use August 20th, 2014

Electrical engineers take major step toward photonic circuits: Team invents non-metallic metamaterial that enables them to 'compress' and contain light August 19th, 2014

Tools

Oxford Instruments Asylum Research Receives the 2014 Microscopy Today Innovation Award for blueDrive Photothermal Excitation August 18th, 2014

Laser makes microscopes way cooler: Cooling a nanowire probe with a laser could lead to substantial improvements in the sensitivity of atomic force probe microscopes August 15th, 2014

JPK reports on the use of AFM and advanced fluorescence microscopy at the University of Freiburg August 13th, 2014

Phasefocus reports on the use of their high-precision Lens Profiler for measuring contact lens thickness at the Brien Holden Vision Institute in Sydney, Australia August 13th, 2014

Energy

Chemical reaction yields "tapes" of porphin molecules: Flexible tapes from the nanoworld August 13th, 2014

Eco-friendly 'pre-fab nanoparticles' could revolutionize nano manufacturing: UMass Amherst team invents a way to create versatile, water-soluble nano-modules August 13th, 2014

“Active” surfaces control what’s on them: Researchers develop treated surfaces that can actively control how fluids or particles move August 6th, 2014

Used-cigarette butts offer energy storage solution August 5th, 2014

Photonics/Optics/Lasers

Electrical engineers take major step toward photonic circuits: Team invents non-metallic metamaterial that enables them to 'compress' and contain light August 19th, 2014

Laser makes microscopes way cooler: Cooling a nanowire probe with a laser could lead to substantial improvements in the sensitivity of atomic force probe microscopes August 15th, 2014

Molecular engineers record an electron's quantum behavior August 14th, 2014

Harry Atwater and Albert Polman receive the Julius Springer Prize for Applied Physics 2014: Scientists honored for their pioneering achievements in plasmonics and nanophotonics August 8th, 2014

Research partnerships

Сalculations with Nanoscale Smart Particles August 19th, 2014

Promising Ferroelectric Materials Suffer From Unexpected Electric Polarizations: Brookhaven Lab scientists find surprising locked charge polarizations that impede performance in next-gen materials that could otherwise revolutionize data-driven devices August 18th, 2014

Nano Bonds Increase Raw Strength of Fireproof Concretes August 18th, 2014

Production of Toxic Ion Nanosorbents with High Sorption Capacity in Iran August 17th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE