Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Biologists Develop Nanosensors to Visualize Movements and Distribution of Plant Stress Hormone

Time sequence shows how mustard seedlings take up and distribute ABA through roots and other parts of the plant during germination. Credit: Rainer Waadt, UC San Diego
Time sequence shows how mustard seedlings take up and distribute ABA through roots and other parts of the plant during germination.

Credit: Rainer Waadt, UC San Diego

Abstract:
Biologists at UC San Diego have succeeded in visualizing the movement within plants of a key hormone responsible for growth and resistance to drought. The achievement will allow researchers to conduct further studies to determine how the hormone helps plants respond to drought and other environmental stresses driven by the continuing increase in the atmosphere's carbon dioxide, or CO2, concentration.

Biologists Develop Nanosensors to Visualize Movements and Distribution of Plant Stress Hormone

San Diego, CA | Posted on April 15th, 2014

The plant hormone the biologists directly tracked is abscisic acid, or ABA, which plays a major role in activating drought resistance responses of plants and in regulating plant growth under environmental stress conditions. The ABA stress hormone also controls the closing of stomata, the pores within leaves through which plants lose 95 percent of their water while taking in CO2 for growth.

Scientists already know the general role that ABA plays within plants, but by directly visualizing the hormone they can now better understand the complex interactions involving ABA when a plant is subjected to drought or other stress.

"Understanding the dynamic distribution of ABA in plants in response to environmental stimuli is of particular importance in elucidating the action of this important plant hormone," says Julian Schroeder, a professor of biology at UC San Diego who headed the research effort. "For example, we can now investigate whether an increase in the leaf CO2 concentration that occurs every night due to respiration in leaves affects the ABA concentration in stomatal cells."

The researchers developed what they call a "genetically-encoded reporter" in order to directly and instantaneously observe the movements of ABA within the mustard plant Arabidopsis. These reporters, called "ABAleons," contain two differentially colored fluorescent proteins attached to an ABA-binding sensor protein. Once bound to ABA, the ABAleons change their fluorescence emission, which can be analyzed using a microscope. The researchers showed that ABA concentration changes and waves of ABA movement could be monitored in diverse tissues and individual cells over time and in response to stress.

"Using this reporter, we directly observed long distance ABA movements from the stem of a germinating seedling to the leaves and roots of the growing plant and, for the first time, we were able to determine the rate of ABA movement within the growing plant," says Schroeder.

"Using this tool, we now can detect ABA in live plants and see how it is distributed," says Rainer Waadt, a postdoctoral associate in Schroeder's laboratory and the first author of the paper. "We are also able to directly see that environmental stress causes an increase in the ABA concentration in the stomatal guard cells that surround each stomatal pore. In the future, our sensors can be used to study ABA distribution in response to different stresses, including CO2 elevations, and to identify other molecules and proteins that affect the distribution of this hormone. We can also learn how fast plants respond to stresses and which tissues are important for the response."

The researchers demonstrated that their new ABA nanosensors also function effectively as isolated proteins. This means that the sensors could be directly employed using state-of-the-art high-throughput screening platforms to screen for chemicals that could activate or enhance a drought resistance response. The scientists say such chemicals could become useful in the future for enhancing a drought resistance response, when crops experience a severe drought, like the one that occurred in the Midwest in the summer of 2012.

The study was supported by grants from the National Science Foundation and, in part, the National Institutes of Health and the U.S Department of Energy's Division of Chemical Sciences, Geosciences, and Biosciences in the Office of Basic Energy Sciences.

####

For more information, please click here

Contacts:
Kim McDonald

858-534-7572

Copyright © University of California - San Diego

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

A paper describing their achievement appears in the April 15 issue of the scientific journal eLife and is accessible here:

Schroeder Lab:

Related News Press

News and information

GLOBALFOUNDRIES and Chengdu Partner to Expand FD-SOI Ecosystem in China: More than $100M investment to establish a center of excellence for FDXTM FD-SOI design May 23rd, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Leti Will Demo World’s-first WVGA 10-µm Pitch GaN Microdisplays for Augmented Reality Video at Display Week in Los Angles: Invited Paper also Will Present Leti’s Success with New Augmented Reality Technology That Reduces Pixel Pitch to Less than 5 Microns May 22nd, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Videos/Movies

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Govt.-Legislation/Regulation/Funding/Policy

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Stanford scientists use nanotechnology to boost the performance of key industrial catalyst May 18th, 2017

Oddball enzyme provides easy path to synthetic biomaterials May 17th, 2017

Sensors

'Hot' electrons don't mind the gap: Rice University scientists find nanogaps in plasmonic gold wires enhance voltage when excited May 8th, 2017

Better living through pressure: Functional nanomaterials made easy April 19th, 2017

A Sensitive And Dynamic Tactile Sensor Read more from Asian Scientist Magazine at: https://www.asianscientist.com/2017/04/tech/tactile-3d-active-matrix-sensor/ April 18th, 2017

AIM Photonics Presents Cutting-Edge Integrated Photonics Technology Developments to Packed House at OFC 2017, the Optical Networking and Communication Conference & Exhibition April 11th, 2017

Discoveries

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Sensors detect disease markers in breath May 19th, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Plasmon-powered upconversion nanocrystals for enhanced bioimaging and polarized emission: Plasmonic gold nanorods brighten lanthanide-doped upconversion superdots for improved multiphoton bioimaging contrast and enable polarization-selective nonlinear emissions for novel nanoscal May 19th, 2017

Announcements

GLOBALFOUNDRIES and Chengdu Partner to Expand FD-SOI Ecosystem in China: More than $100M investment to establish a center of excellence for FDXTM FD-SOI design May 23rd, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Leti Will Demo World’s-first WVGA 10-µm Pitch GaN Microdisplays for Augmented Reality Video at Display Week in Los Angles: Invited Paper also Will Present Leti’s Success with New Augmented Reality Technology That Reduces Pixel Pitch to Less than 5 Microns May 22nd, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Sensors detect disease markers in breath May 19th, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Plasmon-powered upconversion nanocrystals for enhanced bioimaging and polarized emission: Plasmonic gold nanorods brighten lanthanide-doped upconversion superdots for improved multiphoton bioimaging contrast and enable polarization-selective nonlinear emissions for novel nanoscal May 19th, 2017

Food/Agriculture/Supplements

New technology could offer cheaper, faster food testing: Specialized droplets interact with bacteria and can be analyzed using a smartphone April 7th, 2017

Meta-lenses bring benchtop performance to small, hand-held spectrometer: Game-changing nanostructure-based lenses allow smaller devices, increased functionality February 9th, 2017

PCATDES Starts Field Testing of Photocatalytic Reactors in South East Asia December 28th, 2016

News from Quorum: The Agricultural Research Service of the USDA uses a Quorum Cryo-SEM preparation system for the study of mites, ticks and other soft bodied organisms November 22nd, 2016

Nanobiotechnology

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Sensors detect disease markers in breath May 19th, 2017

Oddball enzyme provides easy path to synthetic biomaterials May 17th, 2017

The brighter side of twisted polymers: Conjugated polymers designed with a twist produce tiny, brightly fluorescent particles with broad applications May 16th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project