Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Biologists Develop Nanosensors to Visualize Movements and Distribution of Plant Stress Hormone

Time sequence shows how mustard seedlings take up and distribute ABA through roots and other parts of the plant during germination. Credit: Rainer Waadt, UC San Diego
Time sequence shows how mustard seedlings take up and distribute ABA through roots and other parts of the plant during germination.

Credit: Rainer Waadt, UC San Diego

Abstract:
Biologists at UC San Diego have succeeded in visualizing the movement within plants of a key hormone responsible for growth and resistance to drought. The achievement will allow researchers to conduct further studies to determine how the hormone helps plants respond to drought and other environmental stresses driven by the continuing increase in the atmosphere's carbon dioxide, or CO2, concentration.

Biologists Develop Nanosensors to Visualize Movements and Distribution of Plant Stress Hormone

San Diego, CA | Posted on April 15th, 2014

The plant hormone the biologists directly tracked is abscisic acid, or ABA, which plays a major role in activating drought resistance responses of plants and in regulating plant growth under environmental stress conditions. The ABA stress hormone also controls the closing of stomata, the pores within leaves through which plants lose 95 percent of their water while taking in CO2 for growth.

Scientists already know the general role that ABA plays within plants, but by directly visualizing the hormone they can now better understand the complex interactions involving ABA when a plant is subjected to drought or other stress.

"Understanding the dynamic distribution of ABA in plants in response to environmental stimuli is of particular importance in elucidating the action of this important plant hormone," says Julian Schroeder, a professor of biology at UC San Diego who headed the research effort. "For example, we can now investigate whether an increase in the leaf CO2 concentration that occurs every night due to respiration in leaves affects the ABA concentration in stomatal cells."

The researchers developed what they call a "genetically-encoded reporter" in order to directly and instantaneously observe the movements of ABA within the mustard plant Arabidopsis. These reporters, called "ABAleons," contain two differentially colored fluorescent proteins attached to an ABA-binding sensor protein. Once bound to ABA, the ABAleons change their fluorescence emission, which can be analyzed using a microscope. The researchers showed that ABA concentration changes and waves of ABA movement could be monitored in diverse tissues and individual cells over time and in response to stress.

"Using this reporter, we directly observed long distance ABA movements from the stem of a germinating seedling to the leaves and roots of the growing plant and, for the first time, we were able to determine the rate of ABA movement within the growing plant," says Schroeder.

"Using this tool, we now can detect ABA in live plants and see how it is distributed," says Rainer Waadt, a postdoctoral associate in Schroeder's laboratory and the first author of the paper. "We are also able to directly see that environmental stress causes an increase in the ABA concentration in the stomatal guard cells that surround each stomatal pore. In the future, our sensors can be used to study ABA distribution in response to different stresses, including CO2 elevations, and to identify other molecules and proteins that affect the distribution of this hormone. We can also learn how fast plants respond to stresses and which tissues are important for the response."

The researchers demonstrated that their new ABA nanosensors also function effectively as isolated proteins. This means that the sensors could be directly employed using state-of-the-art high-throughput screening platforms to screen for chemicals that could activate or enhance a drought resistance response. The scientists say such chemicals could become useful in the future for enhancing a drought resistance response, when crops experience a severe drought, like the one that occurred in the Midwest in the summer of 2012.

The study was supported by grants from the National Science Foundation and, in part, the National Institutes of Health and the U.S Department of Energy's Division of Chemical Sciences, Geosciences, and Biosciences in the Office of Basic Energy Sciences.

####

For more information, please click here

Contacts:
Kim McDonald

858-534-7572

Copyright © University of California - San Diego

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

A paper describing their achievement appears in the April 15 issue of the scientific journal eLife and is accessible here:

Schroeder Lab:

Related News Press

News and information

Nanoribbon film keeps glass ice-free: Rice University lab refines deicing film that allows radio frequencies to pass September 16th, 2014

Effective Nanotechnology Innovations to Receive Mustafa Prize September 16th, 2014

‘Small’ transformation yields big changes September 16th, 2014

Elusive Quantum Transformations Found Near Absolute Zero: Brookhaven Lab and Stony Brook University researchers measured the quantum fluctuations behind a novel magnetic material's ultra-cold ferromagnetic phase transition September 15th, 2014

Videos/Movies

RMIT delivers $30m boost to micro and nano-tech August 26th, 2014

The channel that relaxes DNA: Relaxing DNA strands by using nano-channels: Instructions for use August 20th, 2014

“Active” surfaces control what’s on them: Researchers develop treated surfaces that can actively control how fluids or particles move August 6th, 2014

New Method Provides Nanoscale Details of Electrochemical Reactions in Electric Vehicle Battery Materials August 4th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Nanoribbon film keeps glass ice-free: Rice University lab refines deicing film that allows radio frequencies to pass September 16th, 2014

‘Small’ transformation yields big changes September 16th, 2014

'Squid skin' metamaterials project yields vivid color display: Rice lab creates RGB color display technology with aluminum nanorods September 15th, 2014

Fonon at Cutting-Edge of 3D Military Printing: Live-Combat Scenarios Could See a Decisive Advantage with 3D Printing September 15th, 2014

Sensors

Simple, Cost-Effective Method Proposed for Synthesizing Zinc Oxide Nanopigments September 15th, 2014

First Colloid and Polymer Science Lecture awarded to Orlin D. Velev: Chemical engineer honored for outstanding research in colloid science September 12th, 2014

UT Arlington research uses nanotechnology to help cool electrons with no external sources September 11th, 2014

Development of Algorithm for Accurate Calculation of Average Distance Travelled by Low-Speed Electrons without Energy Loss that Are Sensitive to Surface Structure September 11th, 2014

Discoveries

Nanoribbon film keeps glass ice-free: Rice University lab refines deicing film that allows radio frequencies to pass September 16th, 2014

‘Small’ transformation yields big changes September 16th, 2014

Rice rolls 'neat' nanotube fibers: Rice University researchers' acid-free approach leads to strong conductive carbon threads September 15th, 2014

Simple, Cost-Effective Method Proposed for Synthesizing Zinc Oxide Nanopigments September 15th, 2014

Announcements

Nanoribbon film keeps glass ice-free: Rice University lab refines deicing film that allows radio frequencies to pass September 16th, 2014

Effective Nanotechnology Innovations to Receive Mustafa Prize September 16th, 2014

‘Small’ transformation yields big changes September 16th, 2014

Simple, Cost-Effective Method Proposed for Synthesizing Zinc Oxide Nanopigments September 15th, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals

Nanoribbon film keeps glass ice-free: Rice University lab refines deicing film that allows radio frequencies to pass September 16th, 2014

‘Small’ transformation yields big changes September 16th, 2014

'Squid skin' metamaterials project yields vivid color display: Rice lab creates RGB color display technology with aluminum nanorods September 15th, 2014

Simple, Cost-Effective Method Proposed for Synthesizing Zinc Oxide Nanopigments September 15th, 2014

Food/Agriculture/Supplements

Newly-Developed Nanosensor Controls Amount of Edible Dyes in Foodstuff Products September 5th, 2014

Iran Unveils 5 Home-Made Knowledge-Based Products August 25th, 2014

Nanotechnology Helps Production of Super Adsorbent Polymers August 21st, 2014

Success in Intracellular Imaging of Cesium Distribution in Plants Used for Cesium Absorption August 19th, 2014

Nanobiotechnology

NanoStruck has a High Recovery Rate on Mine Tailings: retrieval of up to 96% of Gold, 88% of Silver and 86% of Palladium September 12th, 2014

Boosting armor for nuclear-waste eating microbes September 12th, 2014

Researchers Create World’s Largest DNA Origami September 11th, 2014

UO-Berkeley Lab unveil new nano-sized synthetic scaffolding technique: Oil-and-water approach from Richmond's UO lab to spark new line of versatile peptoid nanosheets September 2nd, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE