Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Scientists Succeed in Simultaneous Determination of Acetaminophen, Codeine in Drug Samples

Abstract:
Iranian chemists from Arak University used carbon nanotubes and succeeded in the production of a sensor that is able to simultaneously determine very tiny amounts of acetaminophen and codeine in drugs without any need to very time-consuming steps for the preparation of the sample.

Scientists Succeed in Simultaneous Determination of Acetaminophen, Codeine in Drug Samples

Tehran, Iran | Posted on April 9th, 2014

Having simple and cheap production method, the sensor can be used in pharmaceutical industries for medical purposes.

Results of the research showed that the produced sensor did not need sample preparation, and it had high sensitivity and selectivity in simultaneous determination of acetaminophen and codeine. Among other characteristics of the research, mention can be made of low production cost, repeatability, rapid response and high stability. In addition, the disturbing species have very small effect on the sensor during the determination.

The researchers employed successfully the produced sensor in detecting medical samples and human blood serum.

In this research and after the production of glassy carbon electrode modified with multi-walled carbon nanotubes, the researchers obtained optimum conditions for detection process such as the type of buffer, pH value of the solution and doping time. Cyclic voltammetry, differential pulse voltammetry, and chronoamperometry methods were used to study the product. Finally, the produced sensor was used under the obtained optimum conditions to simultaneously detect the two types of drugs in biological samples and medications.

The use of nanoparticles, including the use of carbon nanotubes in this sensor, increases electrode surface, electron transfer rate and other catalytic activities of the sensor. It also increases electric currents being measured, and therefore, increases the sensitivity and improves the performance of the product.

Results of the research have been published in Sensors Letters, vol. 10, January 2012, pp. 1039-1046.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Terabyte Photonic Dataset Sale July 30th, 2014

Zenosense, Inc. July 29th, 2014

Optimum inertial design for self-propulsion: A new study investigates the effects of small but finite inertia on the propulsion of micro and nano-scale swimming machines July 29th, 2014

A new way to make microstructured surfaces: Method can produce strong, lightweight materials with specific surface properties July 29th, 2014

Chemistry

Tough foam from tiny sheets: Rice University lab uses atom-thick materials to make ultralight foam July 29th, 2014

Nanotubes/Buckyballs

SouthWest NanoTechnologies Names NanoSperse as A SWeNT Certified Compounder July 29th, 2014

A new way to make microstructured surfaces: Method can produce strong, lightweight materials with specific surface properties July 29th, 2014

UCF Nanotech Spinout Developing Revolutionary Battery Technology: Power the Next Generation of Electronics with Carbon July 23rd, 2014

University of Houston researchers create new method to draw molecules from live cells: Technique using magnetic nanomaterials offers promise for diagnosis, gene therapy July 17th, 2014

Nanomedicine

Zenosense, Inc. July 29th, 2014

Optimum inertial design for self-propulsion: A new study investigates the effects of small but finite inertia on the propulsion of micro and nano-scale swimming machines July 29th, 2014

FEI adds Phase Plate Technology and Titan Halo TEM to its Structural Biology Product Portfolio: New solutions provide the high-quality imaging and contrast necessary to analyze the 3D structure of molecules and molecular complexes July 28th, 2014

New imaging agent provides better picture of the gut July 25th, 2014

Sensors

Production of Toxic Gas Sensor Based on Nanorods July 28th, 2014

Compact Vibration Harvester Power Supply with Highest Efficiency Opens Door to “Fix-and-Forget” Sensor Nodes July 23rd, 2014

Nano-sized Chip "Sniffs Out" Explosives Far Better than Trained Dogs: TAU researcher's groundbreaking sensor detects miniscule concentrations of hazardous materials in the air July 23rd, 2014

Tiny laser sensor heightens bomb detection sensitivity July 19th, 2014

Discoveries

Tough foam from tiny sheets: Rice University lab uses atom-thick materials to make ultralight foam July 29th, 2014

Zenosense, Inc. July 29th, 2014

Optimum inertial design for self-propulsion: A new study investigates the effects of small but finite inertia on the propulsion of micro and nano-scale swimming machines July 29th, 2014

A new way to make microstructured surfaces: Method can produce strong, lightweight materials with specific surface properties July 29th, 2014

Announcements

Terabyte Photonic Dataset Sale July 30th, 2014

Zenosense, Inc. July 29th, 2014

Optimum inertial design for self-propulsion: A new study investigates the effects of small but finite inertia on the propulsion of micro and nano-scale swimming machines July 29th, 2014

A new way to make microstructured surfaces: Method can produce strong, lightweight materials with specific surface properties July 29th, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals

ACS Biomaterials Science & Engineering™: Brand-new journal names editor July 29th, 2014

Tough foam from tiny sheets: Rice University lab uses atom-thick materials to make ultralight foam July 29th, 2014

Optimum inertial design for self-propulsion: A new study investigates the effects of small but finite inertia on the propulsion of micro and nano-scale swimming machines July 29th, 2014

A new way to make microstructured surfaces: Method can produce strong, lightweight materials with specific surface properties July 29th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE