Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Nanoparticles cause cancer cells to self-destruct

Abstract:
Using magnetically controlled nanoparticles to force tumour cells to ‘self-destruct' sounds like science fiction, but could be a future part of cancer treatment, according to research from Lund University in Sweden.

Nanoparticles cause cancer cells to self-destruct

Lund, Sweden | Posted on April 3rd, 2014

"The clever thing about the technique is that we can target selected cells without harming surrounding tissue. There are many ways to kill cells, but this method is contained and remote-controlled", said Professor Erik Renström.

The point of the new technique is that it is much more targeted than trying to kill cancer cells with techniques such as chemotherapy. "Chemotherapy can also affect healthy cells in the body, and it therefore has serious side-effects. Radiotherapy can also affect healthy tissue around the tumour.

"Our technique, on the other hand, is able to attack only the tumour cells", said Enming Zhang, one of the first authors of the study. In brief, the technique involves getting the nanoparticles into a tumour cell, where they bind to lysosomes, the units in the cell that perform 'cleaning patrols'. The lysosomes have the ability to break down foreign substances that have entered a cell. They can also break down the entire cell through a process known as 'controlled cell death', a type of destruction where damaged cells dissolve themselves.

The researchers have used nanoparticles of iron oxide that have been treated with a special form of magnetism. Once the particles are inside the cancer cells, the cells are exposed to a magnetic field, and the nanoparticles begin to rotate in a way that causes the lysosomes to start destroying the cells.

The research group at Lund University is not the first to try and treat cancer using supermagnetic nanoparticles. However, previous attempts have focused on using the magnetic field to create heat that kills the cancer cells. The problem with this is that the heat can cause inflammation that risks harming surrounding, healthy tissue. The new method, on the other hand, in which the rotation of the magnetic nanoparticles can be controlled, only affects the tumour cells that the nanoparticles have entered.

The new technique is primarily intended for cancer treatment, but according to Erik Renström and his colleague Enming Zhang there may be other areas of application. One example is autoimmune diseases such as type 1 diabetes, in which the immune system attacks the body's own insulin production.

The 'superparamagnetic nanoparticles' have attracted a lot of interest from academia and industry in recent years. They are being tested in research on new diagnostic laboratory tests, new methods of viewing phenomena in living tissue, and new drugs.

The researchers at Lund University have a patent pending for their technique with the rotating nanoparticles. However, a lot of work remains before it can be transferred from the laboratory to clinical trials on patients.

###

The study is a collaboration between physicists, chemists, engineers and doctors from Sweden, Germany and the USA. It has been published in the American journal ACS Nano.

####

For more information, please click here

Contacts:
Professor Erik Renström, Lund University
+46 40 39 11 57


Dr Enming Zhang, researcher at Lund University
+46 40 39 11 64

Copyright © Lund University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Download article:

Related News Press

News and information

Organic solar cells reach record efficiency, benchmark for commercialization April 23rd, 2018

Remote-control shoots laser at nano-gold to turn on cancer-killing immune cells April 20th, 2018

New qubit now works without breaks: A universal design for superconducting qubits has been created April 19th, 2018

Observing biological nanotransporters: Chemistry April 19th, 2018

Videos/Movies

Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018

Quantum shift shows itself in coupled light and matter: Rice University scientists corral, quantify subtle movement in condensed matter system April 16th, 2018

Improving human-data interaction to speed nanomaterials innovation: New application of data analysis, visualization techniques achieves better representation of multidimensional materials data: Work is part of Lehigh University's initiative to accelerate understanding of material March 27th, 2018

Individual quantum dots imaged in 3-D for first time February 28th, 2018

Nanomedicine

Remote-control shoots laser at nano-gold to turn on cancer-killing immune cells April 20th, 2018

Observing biological nanotransporters: Chemistry April 19th, 2018

Nanobiotix Shows NBTXR3 Nanoparticles Can Stoke Anti-Tumor Immune Response April 17th, 2018

Tiny nanomachine successfully completes test drive: Researchers at the University of Bonn and the research institute Caesar build a one-wheeled vehicle out of DNA rings April 11th, 2018

Discoveries

Organic solar cells reach record efficiency, benchmark for commercialization April 23rd, 2018

Remote-control shoots laser at nano-gold to turn on cancer-killing immune cells April 20th, 2018

New qubit now works without breaks: A universal design for superconducting qubits has been created April 19th, 2018

Observing biological nanotransporters: Chemistry April 19th, 2018

Announcements

Organic solar cells reach record efficiency, benchmark for commercialization April 23rd, 2018

Remote-control shoots laser at nano-gold to turn on cancer-killing immune cells April 20th, 2018

New qubit now works without breaks: A universal design for superconducting qubits has been created April 19th, 2018

Observing biological nanotransporters: Chemistry April 19th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Organic solar cells reach record efficiency, benchmark for commercialization April 23rd, 2018

Remote-control shoots laser at nano-gold to turn on cancer-killing immune cells April 20th, 2018

New qubit now works without breaks: A universal design for superconducting qubits has been created April 19th, 2018

Observing biological nanotransporters: Chemistry April 19th, 2018

Patents/IP/Tech Transfer/Licensing

Leti Silicon Photonics Design Kit Available in Synopsis OptoDesigner Suite: Kit Contains Design Rules and Building Blocks for Multi-Project Wafers And Custom Runs on Leti’s Si310 Platform April 5th, 2018

NTU scientists create customizable, fabric-like power source for wearable electronics January 30th, 2018

IBM Breaks Records to Top U.S. Patent List for 25th Consecutive Year: IBM Inventors Receive Record 9,043 Patents in 2017 in Areas such as Artificial Intelligence, Cloud, Blockchain, Cybersecurity and Quantum Computing January 11th, 2018

A new product to help combat mouldy walls, thanks to technology developed at the ICN2 December 14th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project