Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Biology as a Designer – From Scientific Research to Industrialized Products

Abstract:
Over the past century, we have expanded enormously our understanding and appreciation of the multitude of wonderfully complex processes and mechanisms that are present in nature. Our increased knowledge of how plants and animals have evolved to better adapt to their habitats and the environment has also had a profound effect on other fields of human endeavor. In particular, the door has been opened to a multitude of opportunities concerning what is loosely termed ‘bio-inspiration' in the fields of engineering and the advancement of man-made technologies. Today indeed, the pioneering innovation in a wide range of practical applications, such as the development of new multi-functional materials, draws directly from the well of experience that nature provides, as scientists strive to find more efficient and environmentally sustainable technical solutions.

Biology as a Designer – From Scientific Research to Industrialized Products

Berlin, Germany | Posted on April 2nd, 2014

While recognising that bio-inspiration for technological development is already an established concept, "An Experimental Study on Adhesive or Anti-adhesive, Bio-inspired Experimental Nanomaterials" by Italian scientists Emiliano Lepore and Nicola Pugno, released in Open Access by De Gruyter Open, sets out to explore the potential of three categories of bio-inspired materials, namely, adhesives, anti-adhesives, and materials designed to offer exceptional characteristics - particularly in terms of their strength-to-weight ratio. In each of these areas, the technologies, which are currently at the forefront of scientific research, are described in relation to how they have been inspired by nature in an attempt to optimise their physical characteristics and performance in operation, with an aim to design and develop new innovative products.

Lepore and Pugno investigate a wide range of natural systems and employ original experimental procedures, the book additionally stands out for its rigorous and innovative approach to biomaterials. For example, the challenge of creating strong, reliable and affordable adhesives appears in numerous areas of engineering, such as the development of aircrafts, and all types of vehicles for transportation on land or water, where the need to save energy consumption by reducing weight is of paramount importance. There is also a specific interest in bonding dissimilar materials, which due to their physical properties prohibit the application of more conventional joining techniques. In this field, inspiration has been sought by investigating the adhesive abilities of insects, spiders, and reptiles.

"By discussing experimental studies on geckos, lotus leaves and spider webs, this monograph encourages the reader to gain inspiration from nature in order to develop technologies and solutions across a broad range of applications which offer significant improvements and advantages in terms of their effectiveness and efficiency" - says Prof. Cecilia Surace from Polytechnic University of Turin. The authors make a case, that by understanding how nature can help to cater for our everyday needs, rather than abusing our planet and polluting the atmosphere, we may learn one of the most important lessons of all: how to achieve true well-being and sustainability for all life on earth.

####

For more information, please click here

Contacts:
Maria Hrynkiewicz
De Gruyter Open
+48 660 476421

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The book is available to read, download and share fully open access here:

Related News Press

News and information

NanoTechnology for Defense (NT4D) October 22nd, 2014

Mechanism behind nature's sparkles revealed October 22nd, 2014

TARA Biosystems and Harris & Harris Group Form Company to Improve Safety and Efficacy of New Therapies October 22nd, 2014

Researchers patent a nanofluid that improves heat conductivity October 22nd, 2014

Materials/Metamaterials

Researchers patent a nanofluid that improves heat conductivity October 22nd, 2014

Materials for the next generation of electronics and photovoltaics: MacArthur Fellow develops new uses for carbon nanotubes October 21st, 2014

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

Announcements

NanoTechnology for Defense (NT4D) October 22nd, 2014

Mechanism behind nature's sparkles revealed October 22nd, 2014

TARA Biosystems and Harris & Harris Group Form Company to Improve Safety and Efficacy of New Therapies October 22nd, 2014

Researchers patent a nanofluid that improves heat conductivity October 22nd, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals

Bipolar Disorder Discovery at the Nano Level: Tiny structures found in brain synapses help scientists better understand disorder October 22nd, 2014

NIST offers electronics industry 2 ways to snoop on self-organizing molecules October 22nd, 2014

Journal Nanotechnology Progress International (JONPI), 2014, Volume 5, Issue 1, pp 1-24 October 22nd, 2014

Mechanism behind nature's sparkles revealed October 22nd, 2014

Nanobiotechnology

Mechanism behind nature's sparkles revealed October 22nd, 2014

‘Designer’ nanodevice could improve treatment options for cancer sufferers October 22nd, 2014

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

Scientists Map Key Moment in Assembly of DNA-Splitting Molecular Machine: Crucial steps and surprising structures revealed in the genesis of the enzyme that divides the DNA double helix during cell replication October 15th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE